Large-eddy simulation of dual-fuel spray ignition at different ambient temperatures

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorTekgül, Buluten_US
dc.contributor.authorKahila, Heikkien_US
dc.contributor.authorKaario, Ossien_US
dc.contributor.authorVuorinen, Villeen_US
dc.contributor.departmentDepartment of Energy and Mechanical Engineeringen
dc.contributor.groupauthorEnergy Conversionen
dc.date.accessioned2020-02-21T08:04:57Z
dc.date.available2020-02-21T08:04:57Z
dc.date.issued2020-05-01en_US
dc.description.abstractHere, a finite-rate chemistry large-eddy simulation (LES) solver is utilized to investigate dual-fuel (DF) ignition process of n-dodecane spray injection into a methane–air mixture at engine-relevant ambient temperatures. The investigated configurations correspond to single-fuel (SF) ϕCH4= 0 and DF ϕCH4= 0.5 conditions for a range of temperatures. The simulation setup is a continuation of the work by Kahila et al. (2019, Combustion and Flame) with the baseline SF spray setup corresponding to the Engine Combustion Network (ECN) Spray A configuration. First, ignition is investigated at different ambient temperatures in 0D and 1D studies in order to isolate the effect of chemistry and chemical mechanism selection to ignition delay time (IDT). Second, 3D LES of SF and DF sprays at three different ambient temperatures is carried out. Third, a reaction sensitivity analysis is performed to investigate the effect of ambient temperature on the most sensitive reactions. The main findings of the paper are as follows: (1) DF ignition characteristics depend on the choice of chemical mechanism, particularly at lower temperatures. (2) Addition of methane to the ambient mixture delays ignition, and this effect is the strongest at lower temperatures. (3) While the inhibiting effect of methane on low- and high-temperature IDT's is evident, the time difference between these two stages is shown to be only slightly dependent on temperature. (4) Reaction sensitivity analysis indicates that reactions related to methane oxidation are more pronounced at lower temperatures. The provided quantitative results indicate the strong ambient temperature sensitivity of the DF ignition process.en
dc.description.versionPeer revieweden
dc.format.extent15
dc.format.extent51-65
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationTekgül, B, Kahila, H, Kaario, O & Vuorinen, V 2020, ' Large-eddy simulation of dual-fuel spray ignition at different ambient temperatures ', Combustion and Flame, vol. 215, pp. 51-65 . https://doi.org/10.1016/j.combustflame.2020.01.017en
dc.identifier.doi10.1016/j.combustflame.2020.01.017en_US
dc.identifier.issn0010-2180
dc.identifier.otherPURE UUID: 98df26a5-7d6e-45e6-9880-18b0ab8f5ba2en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/98df26a5-7d6e-45e6-9880-18b0ab8f5ba2en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85078993329&partnerID=8YFLogxKen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/41062143/1_s2.0_S0010218020300298_main.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/43207
dc.identifier.urnURN:NBN:fi:aalto-202002212260
dc.language.isoenen
dc.publisherELSEVIER SCIENCE INC
dc.relation.ispartofseriesCombustion and Flameen
dc.relation.ispartofseriesVolume 215en
dc.rightsopenAccessen
dc.subject.keywordAmbient temperatureen_US
dc.subject.keywordDual-fuelen_US
dc.subject.keywordECN Spray Aen_US
dc.subject.keywordIDTen_US
dc.subject.keywordIgnitionen_US
dc.subject.keywordLarge-eddy simulationen_US
dc.titleLarge-eddy simulation of dual-fuel spray ignition at different ambient temperaturesen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files