Improvement of interfacial interaction in impregnated wood via grafting methyl methacrylate onto wood cell walls
Loading...
Access rights
openAccess
publishedVersion
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
Date
Department
Major/Subject
Mcode
Degree programme
Language
en
Pages
11
Series
Holzforschung, Volume 74, issue 10, pp. 967-977
Abstract
Improving the interaction between the wood cell wall and a modifying agent is fundamental to enhancing the efficacy of wood modification. The extent of interaction is, nevertheless, difficult to evaluate due to the highly heterogeneous nature of the modified wood. In this study, methacryl groups were grafted onto the wood cell wall polymers, via the reaction between 2-isocyanatoethyl methacrylate (IEMA) and hydroxyl groups, to improve their compatibility and reactivity. Subsequently, methyl methacrylate (MMA) was introduced into methacrylated wood and copolymerized with the bonded methacryl groups. The distribution of IEMA and poly MMA (PMMA) in the wood cell walls was investigated by scanning electron microscopy (SEM) and confocal Raman microscopy. The results showed that MMA penetrated the wood cell walls and formed strong interfacial interaction, which was confirmed by confocal Raman microscopy combined with principal component analysis (PCA). With copolymerization, the highest anti-swelling efficiency (ASE) (57%) was achieved, because of the effect of methacrylation. Compared to the reference, the water resistance and hardness were significantly improved. In addition, the dynamic wettability was also altered largely due to copolymerization.Description
Other note
Citation
Dong, Y, Altgen, M, Mäkelä, M, Rautkari, L, Hughes, M, Li, J & Zhang, S 2020, 'Improvement of interfacial interaction in impregnated wood via grafting methyl methacrylate onto wood cell walls', Holzforschung, vol. 74, no. 10, pp. 967-977. https://doi.org/10.1515/hf-2019-0144