Microwave bone fracture diagnosis using deep neural network

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorBeyraghi, Sinaen_US
dc.contributor.authorGhorbani, Fardinen_US
dc.contributor.authorShabanpour, Javaden_US
dc.contributor.authorLajevardi, Mir Emaden_US
dc.contributor.authorNayyeri, Vahiden_US
dc.contributor.authorChen, Pai Yenen_US
dc.contributor.authorRamahi, Omar M.en_US
dc.contributor.departmentDepartment of Electronics and Nanoengineeringen
dc.contributor.groupauthorSergei Tretiakov Groupen
dc.contributor.organizationPompeu Fabra Universityen_US
dc.contributor.organizationIran University of Science and Technologyen_US
dc.contributor.organizationIslamic Azad Universityen_US
dc.contributor.organizationUniversity of Illinois at Chicagoen_US
dc.contributor.organizationUniversity of Waterlooen_US
dc.date.accessioned2023-10-25T07:37:03Z
dc.date.available2023-10-25T07:37:03Z
dc.date.issued2023-12en_US
dc.descriptionPublisher Copyright: © 2023, Springer Nature Limited.
dc.description.abstractThis paper studies the feasibility of a deep neural network (DNN) approach for bone fracture diagnosis based on the non-invasive propagation of radio frequency waves. In contrast to previous “semi-automated” techniques, where X-ray images were used as the network input, in this work, we use S-parameters profiles for DNN training to avoid labeling and data collection problems. Our designed network can simultaneously classify different complex fracture types (normal, transverse, oblique, and comminuted) and estimate the length of the cracks. The proposed system can be used as a portable device in ambulances, retirement houses, and low-income settings for fast preliminary diagnosis in emergency locations when expert radiologists are not available. Using accurate modeling of the human body as well as changing tissue diameters to emulate various anatomical regions, we have created our datasets. Our numerical results show that our design DNN is successfully trained without overfitting. Finally, for the validation of the numerical results, different sets of experiments have been done on the sheep femur bones covered by the liquid phantom. Experimental results demonstrate that fracture types can be correctly classified without using potentially harmful and ionizing X-rays.en
dc.description.versionPeer revieweden
dc.format.extent11
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationBeyraghi, S, Ghorbani, F, Shabanpour, J, Lajevardi, M E, Nayyeri, V, Chen, P Y & Ramahi, O M 2023, ' Microwave bone fracture diagnosis using deep neural network ', Scientific Reports, vol. 13, no. 1, 16957 . https://doi.org/10.1038/s41598-023-44131-5en
dc.identifier.doi10.1038/s41598-023-44131-5en_US
dc.identifier.issn2045-2322
dc.identifier.otherPURE UUID: e1ea9c7f-84f2-4062-8f40-d976ef22a70fen_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/e1ea9c7f-84f2-4062-8f40-d976ef22a70fen_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85173498991&partnerID=8YFLogxKen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/125742711/Beyraghi_Microwave_bone_fracture.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/124286
dc.identifier.urnURN:NBN:fi:aalto-202310256659
dc.language.isoenen
dc.publisherNature Publishing Group
dc.relation.ispartofseriesScientific Reportsen
dc.relation.ispartofseriesVolume 13, issue 1en
dc.rightsopenAccessen
dc.titleMicrowave bone fracture diagnosis using deep neural networken
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files