Microwave bone fracture diagnosis using deep neural network
dc.contributor | Aalto-yliopisto | fi |
dc.contributor | Aalto University | en |
dc.contributor.author | Beyraghi, Sina | en_US |
dc.contributor.author | Ghorbani, Fardin | en_US |
dc.contributor.author | Shabanpour, Javad | en_US |
dc.contributor.author | Lajevardi, Mir Emad | en_US |
dc.contributor.author | Nayyeri, Vahid | en_US |
dc.contributor.author | Chen, Pai Yen | en_US |
dc.contributor.author | Ramahi, Omar M. | en_US |
dc.contributor.department | Department of Electronics and Nanoengineering | en |
dc.contributor.groupauthor | Sergei Tretiakov Group | en |
dc.contributor.organization | Pompeu Fabra University | en_US |
dc.contributor.organization | Iran University of Science and Technology | en_US |
dc.contributor.organization | Islamic Azad University | en_US |
dc.contributor.organization | University of Illinois at Chicago | en_US |
dc.contributor.organization | University of Waterloo | en_US |
dc.date.accessioned | 2023-10-25T07:37:03Z | |
dc.date.available | 2023-10-25T07:37:03Z | |
dc.date.issued | 2023-12 | en_US |
dc.description | Publisher Copyright: © 2023, Springer Nature Limited. | |
dc.description.abstract | This paper studies the feasibility of a deep neural network (DNN) approach for bone fracture diagnosis based on the non-invasive propagation of radio frequency waves. In contrast to previous “semi-automated” techniques, where X-ray images were used as the network input, in this work, we use S-parameters profiles for DNN training to avoid labeling and data collection problems. Our designed network can simultaneously classify different complex fracture types (normal, transverse, oblique, and comminuted) and estimate the length of the cracks. The proposed system can be used as a portable device in ambulances, retirement houses, and low-income settings for fast preliminary diagnosis in emergency locations when expert radiologists are not available. Using accurate modeling of the human body as well as changing tissue diameters to emulate various anatomical regions, we have created our datasets. Our numerical results show that our design DNN is successfully trained without overfitting. Finally, for the validation of the numerical results, different sets of experiments have been done on the sheep femur bones covered by the liquid phantom. Experimental results demonstrate that fracture types can be correctly classified without using potentially harmful and ionizing X-rays. | en |
dc.description.version | Peer reviewed | en |
dc.format.extent | 11 | |
dc.format.mimetype | application/pdf | en_US |
dc.identifier.citation | Beyraghi, S, Ghorbani, F, Shabanpour, J, Lajevardi, M E, Nayyeri, V, Chen, P Y & Ramahi, O M 2023, ' Microwave bone fracture diagnosis using deep neural network ', Scientific Reports, vol. 13, no. 1, 16957 . https://doi.org/10.1038/s41598-023-44131-5 | en |
dc.identifier.doi | 10.1038/s41598-023-44131-5 | en_US |
dc.identifier.issn | 2045-2322 | |
dc.identifier.other | PURE UUID: e1ea9c7f-84f2-4062-8f40-d976ef22a70f | en_US |
dc.identifier.other | PURE ITEMURL: https://research.aalto.fi/en/publications/e1ea9c7f-84f2-4062-8f40-d976ef22a70f | en_US |
dc.identifier.other | PURE LINK: http://www.scopus.com/inward/record.url?scp=85173498991&partnerID=8YFLogxK | en_US |
dc.identifier.other | PURE FILEURL: https://research.aalto.fi/files/125742711/Beyraghi_Microwave_bone_fracture.pdf | en_US |
dc.identifier.uri | https://aaltodoc.aalto.fi/handle/123456789/124286 | |
dc.identifier.urn | URN:NBN:fi:aalto-202310256659 | |
dc.language.iso | en | en |
dc.publisher | Nature Publishing Group | |
dc.relation.ispartofseries | Scientific Reports | en |
dc.relation.ispartofseries | Volume 13, issue 1 | en |
dc.rights | openAccess | en |
dc.title | Microwave bone fracture diagnosis using deep neural network | en |
dc.type | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä | fi |
dc.type.version | publishedVersion |