Multi-Rate Vibration Signal Analysis for Bearing Fault Detection in Induction Machines Using Supervised Learning Classifiers

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorBouharrouti, Nada Elen_US
dc.contributor.authorMorinigo-Sotelo, Danielen_US
dc.contributor.authorBelahcen, Anouaren_US
dc.contributor.departmentDepartment of Electrical Engineering and Automationen
dc.contributor.groupauthorComputational Electromechanicsen
dc.date.accessioned2024-01-17T08:17:20Z
dc.date.available2024-01-17T08:17:20Z
dc.date.issued2023-12-27en_US
dc.description.abstractVibration signals carry important information about the health state of a ball bearing and have proven their efficiency in training machine learning models for fault diagnosis. However, the sampling rate and frequency resolution of these acquired signals play a key role in the detection analysis. Industrial organizations often seek cost-effective and qualitative measurements, while reducing sensor resolution to optimize their resource allocation. This paper compares the performance of supervised learning classifiers for the fault detection of bearing faults in induction machines using vibration signals sampled at various frequencies. Three classes of algorithms are tested: linear models, tree-based models, and neural networks. These algorithms are trained and evaluated on vibration data collected experimentally and then downsampled to various intermediate levels of sampling, from 48 kHz to 1 kHz, using a fractional downsampling method. The study highlights the trade-off between fault detection accuracy and sampling frequency. It shows that, depending on the machine learning algorithm used, better training accuracies are not systematically achieved when training with vibration signals sampled at a relatively high frequency.en
dc.description.versionPeer revieweden
dc.format.extent24
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationBouharrouti, N E, Morinigo-Sotelo, D & Belahcen, A 2023, ' Multi-Rate Vibration Signal Analysis for Bearing Fault Detection in Induction Machines Using Supervised Learning Classifiers ', Machines, vol. 12 . https://doi.org/10.3390/machines12010017en
dc.identifier.doi10.3390/machines12010017en_US
dc.identifier.issn2075-1702
dc.identifier.otherPURE UUID: 4055df3f-71ce-4dcb-97b1-18df828cb820en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/4055df3f-71ce-4dcb-97b1-18df828cb820en_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/133530919/machines-12-00017-v2.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/125799
dc.identifier.urnURN:NBN:fi:aalto-202401171474
dc.language.isoenen
dc.publisherMDPI AG
dc.relation.ispartofseriesMachinesen
dc.relation.ispartofseriesVolume 12en
dc.rightsopenAccessen
dc.titleMulti-Rate Vibration Signal Analysis for Bearing Fault Detection in Induction Machines Using Supervised Learning Classifiersen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files