Increasing complexity in wireframe DNA nanostructures

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorPiskunen, Petterien_US
dc.contributor.authorNummelin, Samien_US
dc.contributor.authorShen, Boxuanen_US
dc.contributor.authorKostiainen, Mauri A.en_US
dc.contributor.authorLinko, Veikkoen_US
dc.contributor.departmentDepartment of Bioproducts and Biosystemsen
dc.contributor.groupauthorBiohybrid Materialsen
dc.date.accessioned2020-06-01T06:54:36Z
dc.date.available2020-06-01T06:54:36Z
dc.date.issued2020-04-16en_US
dc.description.abstractStructural DNA nanotechnology has recently gained significant momentum, as diverse design tools for producing custom DNA shapes have become more and more accessible to numerous laboratories worldwide. Most commonly, researchers are employing a scaffolded DNA origami technique by “sculpting” a desired shape from a given lattice composed of packed adjacent DNA helices. Albeit relatively straightforward to implement, this approach contains its own apparent restrictions. First, the designs are limited to certain lattice types. Second, the long scaffold strand that runs through the entire structure has to be manually routed. Third, the technique does not support trouble-free fabrication of hollow single-layer structures that may have more favorable features and properties compared to objects with closely packed helices, especially in biological research such as drug delivery. In this focused review, we discuss the recent development of wireframe DNA nanostructures—methods relying on meshing and rendering DNA—that may overcome these obstacles. In addition, we describe each available technique and the possible shapes that can be generated. Overall, the remarkable evolution in wireframe DNA structure design methods has not only induced an increase in their complexity and thus expanded the prevalent shape space, but also already reached a state at which the whole design process of a chosen shape can be carried out automatically. We believe that by combining cost-effective biotechnological mass production of DNA strands with top-down processes that decrease human input in the design procedure to minimum, this progress will lead us to a new era of DNA nanotechnology with potential applications coming increasingly into view.en
dc.description.versionPeer revieweden
dc.format.extent17
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationPiskunen, P, Nummelin, S, Shen, B, Kostiainen, M A & Linko, V 2020, 'Increasing complexity in wireframe DNA nanostructures', Molecules, vol. 25, no. 8, 1823. https://doi.org/10.3390/molecules25081823en
dc.identifier.doi10.3390/molecules25081823en_US
dc.identifier.issn1420-3049
dc.identifier.otherPURE UUID: af9fa6cb-b9e8-433f-bc72-2cc058b8399aen_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/af9fa6cb-b9e8-433f-bc72-2cc058b8399aen_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85083557052&partnerID=8YFLogxK
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/43016489/CHEM_Piskunen_2020_Increasing_Complexity_Molecules.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/44534
dc.identifier.urnURN:NBN:fi:aalto-202006013507
dc.language.isoenen
dc.publisherMDPI AG
dc.relation.ispartofseriesMoleculesen
dc.relation.ispartofseriesVolume 25, issue 8en
dc.rightsopenAccessen
dc.subject.keywordAlgorithmic designen_US
dc.subject.keywordBiomaterialsen_US
dc.subject.keywordComputer-aided designen_US
dc.subject.keywordDNA nanotechnologyen_US
dc.subject.keywordDNA origamien_US
dc.subject.keywordMeshingen_US
dc.subject.keywordNanofabricationen_US
dc.subject.keywordSelf-assemblyen_US
dc.subject.keywordTop-downen_US
dc.subject.keywordWireframe structuresen_US
dc.titleIncreasing complexity in wireframe DNA nanostructuresen
dc.typeA2 Katsausartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files