Compensation for geometric modeling errors by positioning of electrodes in electrical impedance tomography

Loading...
Thumbnail Image
Access rights
openAccess
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
Date
2017-02-07
Major/Subject
Mcode
Degree programme
Language
en
Pages
Series
Inverse Problems, Volume 33, issue 3
Abstract
Electrical impedance tomography aims at reconstructing the conductivity inside a physical body from boundary measurements of current and voltage at a finite number of contact electrodes. In many practical applications, the shape of the imaged object is subject to considerable uncertainties that render reconstructing the internal conductivity impossible if they are not taken into account. This work numerically demonstrates that one can compensate for inaccurate modeling of the object boundary in two spatial dimensions by finding compatible locations and sizes for the electrodes as a part of a reconstruction algorithm. The numerical studies, which are based on both simulated and experimental data, are complemented by proving that the employed complete electrode model is approximately conformally invariant, which suggests that the obtained reconstructions in mismodeled domains reflect conformal images of the true targets. The numerical experiments also confirm that a similar approach does not, in general, lead to a functional algorithm in three dimensions.
Description
Keywords
complete electrode model, conformal invariance, electrical impedance tomography, electrode movement, geometric modeling errors, inaccurate measurement model
Other note
Citation
Hyvönen, N, Majander, H & Staboulis, S 2017, ' Compensation for geometric modeling errors by positioning of electrodes in electrical impedance tomography ', Inverse Problems, vol. 33, no. 3, 035006 . https://doi.org/10.1088/1361-6420/aa59d0