Quantum ergodicity for Eisenstein series on hyperbolic surfaces of large genus

Loading...
Thumbnail Image

Access rights

openAccess
CC BY
publishedVersion

URL

Journal Title

Journal ISSN

Volume Title

A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Major/Subject

Mcode

Degree programme

Language

en

Pages

54

Series

Mathematische Annalen, Volume 389, issue 1, pp. 845–898

Abstract

We give a quantitative estimate for the quantum mean absolute deviation on hyperbolic surfaces of finite area in terms of geometric parameters such as the genus, number of cusps and injectivity radius. It implies a delocalisation result of quantum ergodicity type for eigenfunctions of the Laplacian on hyperbolic surfaces of finite area that Benjamini-Schramm converge to the hyperbolic plane. We show that this is generic for Mirzakhani’s model of random surfaces chosen uniformly with respect to the Weil-Petersson volume. Depending on the particular sequence of surfaces considered this gives a result of delocalisation of most cusp forms or of Eisenstein series.

Description

Keywords

Other note

Citation

Masson, E L & Sahlsten, T 2024, 'Quantum ergodicity for Eisenstein series on hyperbolic surfaces of large genus', Mathematische Annalen, vol. 389, no. 1, pp. 845–898. https://doi.org/10.1007/s00208-023-02671-1