Gradient higher integrability for singular parabolic double-phase systems

No Thumbnail Available
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
Date
2024-05
Major/Subject
Mcode
Degree programme
Language
en
Pages
38
Series
Nonlinear Differential Equations and Applications, Volume 31, issue 3, pp. 1-38
Abstract
We prove a local higher integrability result for the gradient of a weak solution to parabolic double-phase systems of p-Laplace type when 2nn+2<p≤2. The result is based on a reverse Hölder inequality in intrinsic cylinders combining p-intrinsic and (p, q)-intrinsic geometries. A singular scaling deficits affects the range of q.
Description
Publisher Copyright: © The Author(s) 2024.
Keywords
35D30, 35K55, 35K65, Gradient estimates, Parabolic double-phase systems, Parabolic p-Laplace systems
Other note
Citation
Kim, W & Särkiö, L 2024, ' Gradient higher integrability for singular parabolic double-phase systems ', Nonlinear Differential Equations and Applications, vol. 31, no. 3, 40, pp. 1-38 . https://doi.org/10.1007/s00030-024-00928-5