Gradient higher integrability for singular parabolic double-phase systems

No Thumbnail Available

Access rights

openAccess
publishedVersion

URL

Journal Title

Journal ISSN

Volume Title

A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Date

2024-05

Major/Subject

Mcode

Degree programme

Language

en

Pages

38

Series

Nonlinear Differential Equations and Applications, Volume 31, issue 3, pp. 1-38

Abstract

We prove a local higher integrability result for the gradient of a weak solution to parabolic double-phase systems of p-Laplace type when 2nn+2<p≤2. The result is based on a reverse Hölder inequality in intrinsic cylinders combining p-intrinsic and (p, q)-intrinsic geometries. A singular scaling deficits affects the range of q.

Description

Publisher Copyright: © The Author(s) 2024.

Keywords

35D30, 35K55, 35K65, Gradient estimates, Parabolic double-phase systems, Parabolic p-Laplace systems

Other note

Citation

Kim, W & Särkiö, L 2024, 'Gradient higher integrability for singular parabolic double-phase systems', Nonlinear Differential Equations and Applications, vol. 31, no. 3, 40, pp. 1-38. https://doi.org/10.1007/s00030-024-00928-5