CMOS current amplifiers : speed versus nonlinearity

No Thumbnail Available
Journal Title
Journal ISSN
Volume Title
Doctoral thesis (monograph)
Checking the digitized thesis and permission for publishing
Instructions for the author
Date
2000-11-13
Major/Subject
Mcode
Degree programme
Language
en
Pages
293
Series
Report / Helsinki University of Technology, Department of Electrical and Communications Engineering, Electronic Circuit Design Laboratory, 30
Abstract
This work deals with analogue integrated circuit design using various types of current-mode amplifiers. These circuits are analysed and realised using modern CMOS integration technologies. The dynamic nonlinearities of these circuits are discussed in detail as in the literature only linear nonidealities and static nonlinearities are conventionally considered. For the most important open-loop current-mode amplifier, the second-generation current-conveyor (CCII), a macromodel is derived that, unlike other reported macromodels, can accurately predict the common-mode behaviour in differential applications. Similarly, this model is used to describe the nonidealities of several other current-mode amplifiers because similar circuit structures are common in such amplifiers. With modern low-voltage CMOS-technologies, the current-mode operational amplifier and the high-gain current-conveyor (CCII∞) perform better than open-loop current-amplifiers. Similarly, unlike with conventional voltage-mode operational amplifiers, the large-signal settling behaviour of these two amplifier types does not degrade as CMOS-processes are scaled down. In this work, two 1 MHz 3rd -order low-pass continuous-time filters are realised with a 1.2 μm CMOS-process. These filters use a differential CCII∞ with linearised, dynamically biased output stages resulting in performance superior to most OTA-C filter realisations reported. Similarly, two logarithmic amplifier chips are designed and fabricated. The first circuit, implemented with a 1.2 μm BiCMOS-process, uses again a CCII∞. This circuit uses a pn-junction as a logarithmic feedback element. With a CCII∞ the constant gain-bandwidth product, typical of voltage-mode operational amplifiers, is avoided resulting in a constant 1 MHz bandwidth with a 60 dB signal amplitude range. The second current-mode logarithmic amplifier, based on piece-wise linear approximation of the logarithmic function by a cascade of limiting current amplifier stages, is realised in a standard 1.2 μm CMOS-process. The limiting level in these current amplifiers is less sensitive to process variation than in limiting voltage amplifiers resulting in exceptionally low temperature dependency of the logarithmic output signal. Additionally, along with this logarithmic amplifier a new current peak detectoris developed.
Description
Keywords
analogue integrated circuit, CMOS, current amplifier, current-mode, amplifier distortion, nonlinearity, continuous-time filter, logarithmic amplifier
Other note
Citation
Permanent link to this item
https://urn.fi/urn:nbn:fi:tkk-002462