Coordination-aware assurance for end-to-end machine learning systems: the R3E approach

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorTruong, Linhen_US
dc.contributor.departmentDepartment of Computer Scienceen
dc.contributor.editorBatarseh, Ferasen_US
dc.contributor.editorFreeman, Lauraen_US
dc.contributor.groupauthorComputer Science Professorsen
dc.contributor.groupauthorComputer Science - Computing Systems (ComputingSystems)en
dc.contributor.groupauthorComputer Science - Artificial Intelligence and Machine Learning (AIML)en
dc.date.accessioned2024-01-04T09:13:18Z
dc.date.available2024-01-04T09:13:18Z
dc.date.issued2022en_US
dc.description.abstractConcerns of robustness, reliability, resilience, and elasticity in Machine Learning (ML) systems are important, and they must be considered in trade-off with efficiency factors. However, they need to be supported and optimized in an end-to-end manner, not just for ML models. In this chapter we present a conceptual approach to architectural design and engineering of the robustness, reliability, resilience, and elasticity (R3E) for end-to-end big data ML systems at runtime. We propose quality of analytics as a contractual means for optimizing end-to-end big data machine learning (BDML) systems. Based on that, we propose to define and abstract diverse types of components under R3E objects and devise operations and metrics for managing R3E attributes. Through a set of proposed coordination, monitoring, analytics, and testing methods, we identify essential tasks for tackling R3E concerns when developing BDML systems. Finally, we illustrate our approach with an example of an end-to-end BDML system for building objects classifications.en
dc.description.versionPeer revieweden
dc.format.extent339-367
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationTruong, L 2022, Coordination-aware assurance for end-to-end machine learning systems: the R3E approach . in F Batarseh & L Freeman (eds), AI Assurance: Towards Trustworthy, Explainable, Safe, and Ethical AI . Elsevier, pp. 339-367 . https://doi.org/10.1016/B978-0-32-391919-7.00024-Xen
dc.identifier.doi10.1016/B978-0-32-391919-7.00024-Xen_US
dc.identifier.isbn978-0-323-91919-7
dc.identifier.isbn978-0-323-91882-4
dc.identifier.otherPURE UUID: d0df52a9-4369-4772-9f0e-2610d4921a15en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/d0df52a9-4369-4772-9f0e-2610d4921a15en_US
dc.identifier.otherPURE LINK: https://www.elsevier.com/books/ai-assurance/batarseh/978-0-323-91919-7en_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/130648847/Coordination-aware_assurance_for_end-to-end_machine_learning_systems.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/125536
dc.identifier.urnURN:NBN:fi:aalto-202401041225
dc.language.isoenen
dc.relation.ispartofseriesAI Assurance: Towards Trustworthy, Explainable, Safe, and Ethical AIen
dc.rightsopenAccessen
dc.titleCoordination-aware assurance for end-to-end machine learning systems: the R3E approachen
dc.typeA3 Kirjan tai muun kokoomateoksen osafi
dc.type.versionacceptedVersion

Files