DNA nanostructure-directed assembly of metal nanoparticle superlattices

Loading...
Thumbnail Image

Access rights

openAccess
publishedVersion

URL

Journal Title

Journal ISSN

Volume Title

A2 Katsausartikkeli tieteellisessä aikakauslehdessä

Major/Subject

Mcode

Degree programme

Language

en

Pages

11

Series

Journal of Nanoparticle Research, Volume 20, issue 5

Abstract

Structural DNA nanotechnology provides unique, well-controlled, versatile, and highly addressable motifs and templates for assembling materials at the nanoscale. These methods to build from the bottom-up using DNA as a construction material are based on programmable and fully predictable Watson-Crick base pairing. Researchers have adopted these techniques to an increasing extent for creating numerous DNA nanostructures for a variety of uses ranging from nanoelectronics to drug-delivery applications. Recently, an increasing effort has been put into attaching nanoparticles (the size range of 1–20 nm) to the accurate DNA motifs and into creating metallic nanostructures (typically 20–100 nm) using designer DNA nanoshapes as molds or stencils. By combining nanoparticles with the superior addressability of DNA-based scaffolds, it is possible to form well-ordered materials with intriguing and completely new optical, plasmonic, electronic, and magnetic properties. This focused review discusses the DNA structure-directed nanoparticle assemblies covering the wide range of different one-, two-, and three-dimensional systems.

Description

Other note

Citation

Julin, S, Nummelin, S, Kostiainen, M A & Linko, V 2018, 'DNA nanostructure-directed assembly of metal nanoparticle superlattices', Journal of Nanoparticle Research, vol. 20, no. 5, 119. https://doi.org/10.1007/s11051-018-4225-3