Recent Studies on Chicken Swarm Optimization algorithm: a review (2014–2018)
dc.contributor | Aalto-yliopisto | fi |
dc.contributor | Aalto University | en |
dc.contributor.author | Deb, Sanchari | en_US |
dc.contributor.author | Gao, Xiao Zhi | en_US |
dc.contributor.author | Tammi, Kari | en_US |
dc.contributor.author | Kalita, Karuna | en_US |
dc.contributor.author | Mahanta, Pinakeswar | en_US |
dc.contributor.department | Department of Mechanical Engineering | en |
dc.contributor.organization | Indian Institute of Technology Guwahati | en_US |
dc.contributor.organization | University of Eastern Finland | en_US |
dc.date.accessioned | 2019-07-30T07:20:37Z | |
dc.date.available | 2019-07-30T07:20:37Z | |
dc.date.embargo | info:eu-repo/date/embargoEnd/2020-05-23 | en_US |
dc.date.issued | 2020-03-01 | en_US |
dc.description.abstract | Solving a complex optimization problem in a limited timeframe is a tedious task. Conventional gradient-based optimization algorithms have their limitations in solving complex problems such as unit commitment, microgrid planning, vehicle routing, feature selection, and community detection in social networks. In recent years population-based bio-inspired algorithms have demonstrated competitive performance on a wide range of optimization problems. Chicken Swarm Optimization Algorithm (CSO) is one of such bio-inspired meta-heuristic algorithms mimicking the behaviour of chicken swarm. It is reported in many literature that CSO outperforms a number of well-known meta-heuristics in a wide range of benchmark problems. This paper presents a review of various issues related to CSO like general biology, fundamentals, variants of CSO, performance of CSO, and applications of CSO. | en |
dc.description.version | Peer reviewed | en |
dc.format.extent | 29 | |
dc.format.mimetype | application/pdf | en_US |
dc.identifier.citation | Deb, S, Gao, X Z, Tammi, K, Kalita, K & Mahanta, P 2020, ' Recent Studies on Chicken Swarm Optimization algorithm : a review (2014–2018) ', Artificial Intelligence Review, vol. 53, no. 3, pp. 1737-1765 . https://doi.org/10.1007/s10462-019-09718-3 | en |
dc.identifier.doi | 10.1007/s10462-019-09718-3 | en_US |
dc.identifier.issn | 0269-2821 | |
dc.identifier.other | PURE UUID: d92cdfa7-1fa8-404a-a7de-7aa281347eed | en_US |
dc.identifier.other | PURE ITEMURL: https://research.aalto.fi/en/publications/d92cdfa7-1fa8-404a-a7de-7aa281347eed | en_US |
dc.identifier.other | PURE LINK: http://www.scopus.com/inward/record.url?scp=85066858369&partnerID=8YFLogxK | en_US |
dc.identifier.other | PURE FILEURL: https://research.aalto.fi/files/36987043/ENG_Deb_et_al_Recent_studies_on_chicken_swarm_Artificial_Intelligence_Review.pdf | en_US |
dc.identifier.uri | https://aaltodoc.aalto.fi/handle/123456789/39510 | |
dc.identifier.urn | URN:NBN:fi:aalto-201907304565 | |
dc.language.iso | en | en |
dc.publisher | Springer Netherlands | |
dc.relation.ispartofseries | Artificial Intelligence Review | en |
dc.rights | openAccess | en |
dc.subject.keyword | Applications | en_US |
dc.subject.keyword | Chicken Swarm Optimization algorithm | en_US |
dc.subject.keyword | Nature inspired intelligence | en_US |
dc.subject.keyword | Optimization algorithm | en_US |
dc.subject.keyword | Review | en_US |
dc.title | Recent Studies on Chicken Swarm Optimization algorithm: a review (2014–2018) | en |
dc.type | A2 Katsausartikkeli tieteellisessä aikakauslehdessä | fi |