Computational exploration of Fe55@C240-catalyzed Fischer-Tropsch synthesis

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorCilpa-Karhu, Geraldine
dc.contributor.authorLaasonen, Kari
dc.contributor.departmentDepartment of Chemistry and Materials Science
dc.date.accessioned2018-03-23T13:36:58Z
dc.date.available2018-03-23T13:36:58Z
dc.date.embargoinfo:eu-repo/date/embargoEnd/2019-01-03
dc.date.issued2018
dc.description.abstractSingle-shell carbon-encapsulated iron nanoparticles (SCEINs), Fe@C, have been shown to be charge-transfer complexes that can act as effective catalysts in the hydrogen and oxygen evolution reactions. A new generation of Fe-based catalysts for Fischer-Tropsch synthesis (FTS) which resembles SCEINs, e.g. single carbide nanoparticles encapsulated in carbon shells, has demonstrated enhanced activity and stability for FTS as compared to other carbon-supported Fe-based FTS. Thus the catalytic ability of SCEINs for the water splitting reactions and the Fe-based FTS catalyst with SCEINs-like features stimulated our exploration of SCEINs-catalyzed FTS. We performed ab initio DFT calculations using a realistic SCEINs model system Fe55@C240 to investigate for the first time the adsorption of the main reactants in FTS (CO and H/H2) and further to evaluate the catalytic ability of Fe55@C240 by reproducing the key steps of the well-known Fe-based FTS mechanisms (carbide, enol and CO insertion). Our calculations revealed: (i) a determinant role of Fe in enhancing CO adsorption (ii) strong cooperative effects with the adsorbates that stabilize the binding (iii) a less favourable two-sites reaction on Fe55@C240 due to preferential positions of the reactants farther to each other which prevent enol and carbide FTS mechanisms. We propose therefore a possible CO insertion path for hydrocarbon growth on Fe55@C240.en
dc.description.versionPeer revieweden
dc.format.extent13
dc.format.extent2741-2753
dc.identifier.citationCilpa-Karhu , G & Laasonen , K 2018 , ' Computational exploration of Fe55@C240-catalyzed Fischer-Tropsch synthesis ' Physical Chemistry Chemical Physics , vol 20 , no. 4 , pp. 2741-2753 . DOI: 10.1039/C7CP06473J , 10.1039/c7cp06473jen
dc.identifier.doi10.1039/C7CP06473J
dc.identifier.issn1463-9076
dc.identifier.issn1463-9084
dc.identifier.otherPURE UUID: c3316c5b-f183-4092-8e4e-542c77c34f9b
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/computational-exploration-of-fe55c240catalyzed-fischertropsch-synthesis(c3316c5b-f183-4092-8e4e-542c77c34f9b).html
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85041219718&partnerID=8YFLogxK
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/30312
dc.identifier.urnURN:NBN:fi:aalto-201803231780
dc.language.isoenen
dc.relation.ispartofseriesPhysical Chemistry Chemical Physicsen
dc.relation.ispartofseriesVolume 20, issue 4en
dc.rightsembargoedAccessen
dc.subject.keyword116 Chemical sciences
dc.subject.other116 Chemical sciencesen
dc.titleComputational exploration of Fe55@C240-catalyzed Fischer-Tropsch synthesisen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi

Files