Fundamentals of force-controlled friction riveting: Part I-joint formation and heat development
Loading...
Access rights
openAccess
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
Date
2018-11-15
Major/Subject
Mcode
Degree programme
Language
en
Pages
Series
Materials, Volume 11, issue 11
Abstract
This work presents a systematic study on the correlations between process parameters and rivet plastic deformation, produced by force-controlled friction riveting. The 5 mm diameter AA2024 rivets were joined to 13 mm, nominal thickness, polyetherimide plates. A wide range of joint formations was obtained, reflecting the variation in total energy input (24-208 J) and process temperature (319-501 °C). The influence of the process parameters on joint formation was determined, using a central composite design and response surface methodology. Friction time displayed the highest contribution on both rivet penetration (61.9%) and anchoring depth (34.7%), and friction force on the maximum width of the deformed rivet tip (46.5%). Quadratic effects and two-way interactions were significant on rivet anchoring depth (29.8 and 20.8%, respectively). Bell-shaped rivet plastic deformation-high mechanical interlocking-results from moderate energy inputs (~100 J). These geometries are characterized by: rivet penetration depth of 7 to 9 mm; maximum width of the deformed rivet tip of 9 to 12 mm; and anchoring depth higher than 6 mm. This knowledge allows the production of optimized friction-riveted connections and a deeper understanding of the joining mechanisms, further discussed in Part II of this work.Description
Keywords
Friction, Hybrid structures, Joining, Response surface, Riveting
Other note
Citation
Cipriano, G P, Blaga, L A, dos Santos, J F, Vilaça, P & Amancio-Filho, S T 2018, ' Fundamentals of force-controlled friction riveting : Part I-joint formation and heat development ', Materials, vol. 11, no. 11, 2294 . https://doi.org/10.3390/ma11112294