Fine-Grained Complexity of Earth Mover’s Distance Under Translation

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorBringmann, Karlen_US
dc.contributor.authorStaals, Franken_US
dc.contributor.authorWęgrzycki, Karolen_US
dc.contributor.authorvan Wordragen, Geerten_US
dc.contributor.departmentDepartment of Computer Scienceen
dc.contributor.editorMulzer, Wolfgangen_US
dc.contributor.editorPhillips, Jeff M.en_US
dc.contributor.organizationSaarland Universityen_US
dc.contributor.organizationUtrecht Universityen_US
dc.date.accessioned2024-06-20T08:15:31Z
dc.date.available2024-06-20T08:15:31Z
dc.date.issued2024-06en_US
dc.descriptionPublisher Copyright: © Karl Bringmann, Frank Staals, Karol Węgrzycki, and Geert van Wordragen.
dc.description.abstractThe Earth Mover’s Distance is a popular similarity measure in several branches of computer science. It measures the minimum total edge length of a perfect matching between two point sets. The Earth Mover’s Distance under Translation (EMDuT) is a translation-invariant version thereof. It minimizes the Earth Mover’s Distance over all translations of one point set. For EMDuT in R1, we present an Oe(n2)-time algorithm. We also show that this algorithm is nearly optimal by presenting a matching conditional lower bound based on the Orthogonal Vectors Hypothesis. For EMDuT in Rd, we present an Oe(n2d+2)-time algorithm for the L1 and L∞ metric. We show that this dependence on d is asymptotically tight, as an no(d)-time algorithm for L1 or L∞ would contradict the Exponential Time Hypothesis (ETH). Prior to our work, only approximation algorithms were known for these problems.en
dc.description.versionPeer revieweden
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationBringmann, K, Staals, F, Węgrzycki, K & van Wordragen, G 2024, Fine-Grained Complexity of Earth Mover’s Distance Under Translation. in W Mulzer & J M Phillips (eds), 40th International Symposium on Computational Geometry, SoCG 2024., 25, Leibniz International Proceedings in Informatics, LIPIcs, vol. 293, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, International Symposium on Computational Geometry, Athens, Greece, 11/06/2024. https://doi.org/10.4230/LIPIcs.SoCG.2024.25en
dc.identifier.doi10.4230/LIPIcs.SoCG.2024.25en_US
dc.identifier.isbn978-3-95977-316-4
dc.identifier.issn1868-8969
dc.identifier.otherPURE UUID: 0ca4c3b4-9f42-47fd-8541-bdd4d80f10afen_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/0ca4c3b4-9f42-47fd-8541-bdd4d80f10afen_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85195480012&partnerID=8YFLogxK
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/148757036/SCI_Bringmann_etal_LIPIcs.SoCG.2024.25.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/129016
dc.identifier.urnURN:NBN:fi:aalto-202406204602
dc.language.isoenen
dc.relation.ispartofInternational Symposium on Computational Geometryen
dc.relation.ispartofseries40th International Symposium on Computational Geometry, SoCG 2024en
dc.relation.ispartofseriesLeibniz International Proceedings in Informatics, LIPIcs ; Volume 293en
dc.rightsopenAccessen
dc.subject.keywordEarth Mover’s Distanceen_US
dc.subject.keywordEarth Mover’s Distance under Translationen_US
dc.subject.keywordFine-Grained Complexityen_US
dc.subject.keywordMaximum Weight Bipartite Matchingen_US
dc.titleFine-Grained Complexity of Earth Mover’s Distance Under Translationen
dc.typeA4 Artikkeli konferenssijulkaisussafi
dc.type.versionpublishedVersion

Files