Fine-Grained Complexity of Earth Mover’s Distance Under Translation
dc.contributor | Aalto-yliopisto | fi |
dc.contributor | Aalto University | en |
dc.contributor.author | Bringmann, Karl | en_US |
dc.contributor.author | Staals, Frank | en_US |
dc.contributor.author | Węgrzycki, Karol | en_US |
dc.contributor.author | van Wordragen, Geert | en_US |
dc.contributor.department | Department of Computer Science | en |
dc.contributor.editor | Mulzer, Wolfgang | en_US |
dc.contributor.editor | Phillips, Jeff M. | en_US |
dc.contributor.organization | Saarland University | en_US |
dc.contributor.organization | Utrecht University | en_US |
dc.date.accessioned | 2024-06-20T08:15:31Z | |
dc.date.available | 2024-06-20T08:15:31Z | |
dc.date.issued | 2024-06 | en_US |
dc.description | Publisher Copyright: © Karl Bringmann, Frank Staals, Karol Węgrzycki, and Geert van Wordragen. | |
dc.description.abstract | The Earth Mover’s Distance is a popular similarity measure in several branches of computer science. It measures the minimum total edge length of a perfect matching between two point sets. The Earth Mover’s Distance under Translation (EMDuT) is a translation-invariant version thereof. It minimizes the Earth Mover’s Distance over all translations of one point set. For EMDuT in R1, we present an Oe(n2)-time algorithm. We also show that this algorithm is nearly optimal by presenting a matching conditional lower bound based on the Orthogonal Vectors Hypothesis. For EMDuT in Rd, we present an Oe(n2d+2)-time algorithm for the L1 and L∞ metric. We show that this dependence on d is asymptotically tight, as an no(d)-time algorithm for L1 or L∞ would contradict the Exponential Time Hypothesis (ETH). Prior to our work, only approximation algorithms were known for these problems. | en |
dc.description.version | Peer reviewed | en |
dc.format.mimetype | application/pdf | en_US |
dc.identifier.citation | Bringmann, K, Staals, F, Węgrzycki, K & van Wordragen, G 2024, Fine-Grained Complexity of Earth Mover’s Distance Under Translation. in W Mulzer & J M Phillips (eds), 40th International Symposium on Computational Geometry, SoCG 2024., 25, Leibniz International Proceedings in Informatics, LIPIcs, vol. 293, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, International Symposium on Computational Geometry, Athens, Greece, 11/06/2024. https://doi.org/10.4230/LIPIcs.SoCG.2024.25 | en |
dc.identifier.doi | 10.4230/LIPIcs.SoCG.2024.25 | en_US |
dc.identifier.isbn | 978-3-95977-316-4 | |
dc.identifier.issn | 1868-8969 | |
dc.identifier.other | PURE UUID: 0ca4c3b4-9f42-47fd-8541-bdd4d80f10af | en_US |
dc.identifier.other | PURE ITEMURL: https://research.aalto.fi/en/publications/0ca4c3b4-9f42-47fd-8541-bdd4d80f10af | en_US |
dc.identifier.other | PURE LINK: http://www.scopus.com/inward/record.url?scp=85195480012&partnerID=8YFLogxK | |
dc.identifier.other | PURE FILEURL: https://research.aalto.fi/files/148757036/SCI_Bringmann_etal_LIPIcs.SoCG.2024.25.pdf | en_US |
dc.identifier.uri | https://aaltodoc.aalto.fi/handle/123456789/129016 | |
dc.identifier.urn | URN:NBN:fi:aalto-202406204602 | |
dc.language.iso | en | en |
dc.relation.ispartof | International Symposium on Computational Geometry | en |
dc.relation.ispartofseries | 40th International Symposium on Computational Geometry, SoCG 2024 | en |
dc.relation.ispartofseries | Leibniz International Proceedings in Informatics, LIPIcs ; Volume 293 | en |
dc.rights | openAccess | en |
dc.subject.keyword | Earth Mover’s Distance | en_US |
dc.subject.keyword | Earth Mover’s Distance under Translation | en_US |
dc.subject.keyword | Fine-Grained Complexity | en_US |
dc.subject.keyword | Maximum Weight Bipartite Matching | en_US |
dc.title | Fine-Grained Complexity of Earth Mover’s Distance Under Translation | en |
dc.type | A4 Artikkeli konferenssijulkaisussa | fi |
dc.type.version | publishedVersion |