Revealing technological entanglements in uncertain decarbonisation pathways using bayesian networks

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorLi, Pei Haoen_US
dc.contributor.authorZamanipour, Behzaden_US
dc.contributor.authorKeppo, Ilkkaen_US
dc.contributor.departmentDepartment of Energy and Mechanical Engineeringen
dc.contributor.groupauthorEnergy Conversion and Systemsen
dc.contributor.organizationUniversity College Londonen_US
dc.date.accessioned2024-08-09T11:10:14Z
dc.date.available2024-08-09T11:10:14Z
dc.date.issued2024-10en_US
dc.descriptionPublisher Copyright: © 2024 The Authors
dc.description.abstractTo effectively meet the ambitious objectives set by the Paris Agreement, gaining a deeper understanding of the relationships between the key technologies involved in mitigation activities is pivotal. This research uses Bayesian Network (BN) methodology on a large ensemble of energy system model runs, aiming to shed light on the complex interdependencies, and related uncertainties, among the various technologies within the pathways. We specifically focus on tracking the evolution and interconnectedness of technology portfolios over time, enabling dynamic assessments of the impacts linked to specific deployment strategies. The results suggest that prioritizing early-stage transitions within the building sector is imperative and the consistent deployment of district heating emerges as a pivotal element in the long-term plans for decarbonisation. In the power sector, the rising trends in electrification and the substantial growth in low-carbon power plants and wind energy deployment, underscore the urgency for adaptable strategies within the power sector. Notably, the integration of bioenergy with carbon capture and storage (BECCS) also emerges as a crucial technology, offering a means to counterbalance emissions from carbon-intensive industries. The BN-based approach provides decision makers a powerful tool for comprehensive, informed, and systematic planning as they navigate towards a carbon-neutral future, but it is also crucial to acknowledge the reliance of our analysis on assumptions inherent in energy system models. Studies using different assumptions and model structures are needed to confirm the generalizability of our findings.en
dc.description.versionPeer revieweden
dc.format.extent21
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationLi, P H, Zamanipour, B & Keppo, I 2024, 'Revealing technological entanglements in uncertain decarbonisation pathways using bayesian networks', Energy Policy, vol. 193, 114273. https://doi.org/10.1016/j.enpol.2024.114273en
dc.identifier.doi10.1016/j.enpol.2024.114273en_US
dc.identifier.issn0301-4215
dc.identifier.issn1873-6777
dc.identifier.otherPURE UUID: f38f183a-f533-4b6d-9668-62e1e0cb7250en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/f38f183a-f533-4b6d-9668-62e1e0cb7250en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85199522382&partnerID=8YFLogxK
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/153423325/1-s2.0-S0301421524002933-main.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/129831
dc.identifier.urnURN:NBN:fi:aalto-202408095399
dc.language.isoenen
dc.publisherElsevier
dc.relation.ispartofseriesEnergy Policyen
dc.relation.ispartofseriesVolume 193en
dc.rightsopenAccessen
dc.subject.keywordBayesian networksen_US
dc.subject.keywordDecarbonisation pathwaysen_US
dc.subject.keywordEnergy system modelen_US
dc.subject.keywordUncertaintyen_US
dc.titleRevealing technological entanglements in uncertain decarbonisation pathways using bayesian networksen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files