Revealing technological entanglements in uncertain decarbonisation pathways using bayesian networks
Loading...
Access rights
openAccess
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal
View/Open full text file from the Research portal
Other link related to publication
View publication in the Research portal
View/Open full text file from the Research portal
Other link related to publication
Date
2024-10
Department
Major/Subject
Mcode
Degree programme
Language
en
Pages
21
Series
Energy Policy, Volume 193
Abstract
To effectively meet the ambitious objectives set by the Paris Agreement, gaining a deeper understanding of the relationships between the key technologies involved in mitigation activities is pivotal. This research uses Bayesian Network (BN) methodology on a large ensemble of energy system model runs, aiming to shed light on the complex interdependencies, and related uncertainties, among the various technologies within the pathways. We specifically focus on tracking the evolution and interconnectedness of technology portfolios over time, enabling dynamic assessments of the impacts linked to specific deployment strategies. The results suggest that prioritizing early-stage transitions within the building sector is imperative and the consistent deployment of district heating emerges as a pivotal element in the long-term plans for decarbonisation. In the power sector, the rising trends in electrification and the substantial growth in low-carbon power plants and wind energy deployment, underscore the urgency for adaptable strategies within the power sector. Notably, the integration of bioenergy with carbon capture and storage (BECCS) also emerges as a crucial technology, offering a means to counterbalance emissions from carbon-intensive industries. The BN-based approach provides decision makers a powerful tool for comprehensive, informed, and systematic planning as they navigate towards a carbon-neutral future, but it is also crucial to acknowledge the reliance of our analysis on assumptions inherent in energy system models. Studies using different assumptions and model structures are needed to confirm the generalizability of our findings.Description
Publisher Copyright: © 2024 The Authors
Keywords
Bayesian networks, Decarbonisation pathways, Energy system model, Uncertainty
Other note
Citation
Li, P H, Zamanipour, B & Keppo, I 2024, ' Revealing technological entanglements in uncertain decarbonisation pathways using bayesian networks ', Energy Policy, vol. 193, 114273 . https://doi.org/10.1016/j.enpol.2024.114273