Learning Centre

Non-leaching, Highly Biocompatible Nanocellulose Surfaces That Efficiently Resist Fouling by Bacteria in an Artificial Dermis Model

 |  Login

Show simple item record

dc.contributor Aalto-yliopisto fi
dc.contributor Aalto University en
dc.contributor.author Hassan, Ghada
dc.contributor.author Forsman, Nina
dc.contributor.author Wan, Xing
dc.contributor.author Keurulainen, Leena
dc.contributor.author Bimbo, Luis M.
dc.contributor.author Stehl, Susanne
dc.contributor.author Van Charante, Frits
dc.contributor.author Chrubasik, Michael
dc.contributor.author Prakash, Aruna S.
dc.contributor.author Johansson, Leena Sisko
dc.contributor.author Mullen, Declan C.
dc.contributor.author Johnston, Blair F.
dc.contributor.author Zimmermann, Ralf
dc.contributor.author Werner, Carsten
dc.contributor.author Yli-Kauhaluoma, Jari
dc.contributor.author Coenye, Tom
dc.contributor.author Saris, Per E.J.
dc.contributor.author Österberg, Monika
dc.contributor.author Moreira, Vânia M.
dc.date.accessioned 2020-11-30T08:21:04Z
dc.date.available 2020-11-30T08:21:04Z
dc.date.issued 2020-07-20
dc.identifier.citation Hassan , G , Forsman , N , Wan , X , Keurulainen , L , Bimbo , L M , Stehl , S , Van Charante , F , Chrubasik , M , Prakash , A S , Johansson , L S , Mullen , D C , Johnston , B F , Zimmermann , R , Werner , C , Yli-Kauhaluoma , J , Coenye , T , Saris , P E J , Österberg , M & Moreira , V M 2020 , ' Non-leaching, Highly Biocompatible Nanocellulose Surfaces That Efficiently Resist Fouling by Bacteria in an Artificial Dermis Model ' , ACS Applied Bio Materials , vol. 3 , no. 7 , pp. 4095-4108 . https://doi.org/10.1021/acsabm.0c00203 en
dc.identifier.issn 2576-6422
dc.identifier.other PURE UUID: f13cbd47-5592-4fa0-b7d9-e38a4a53ed17
dc.identifier.other PURE ITEMURL: https://research.aalto.fi/en/publications/nonleaching-highly-biocompatible-nanocellulose-surfaces-that-efficiently-resist-fouling-by-bacteria-in-an-artificial-dermis-model(f13cbd47-5592-4fa0-b7d9-e38a4a53ed17).html
dc.identifier.other PURE LINK: http://www.scopus.com/inward/record.url?scp=85094956707&partnerID=8YFLogxK
dc.identifier.other PURE FILEURL: https://research.aalto.fi/files/52777228/acsabm.0c00203.pdf
dc.identifier.uri https://aaltodoc.aalto.fi/handle/123456789/61833
dc.description.abstract Bacterial biofilm infections incur massive costs on healthcare systems worldwide. Particularly worrisome are the infections associated with pressure ulcers and prosthetic, plastic, and reconstructive surgeries, where staphylococci are the major biofilm-forming pathogens. Non-leaching antimicrobial surfaces offer great promise for the design of bioactive coatings to be used in medical devices. However, the vast majority are cationic, which brings about undesirable toxicity. To circumvent this issue, we have developed antimicrobial nanocellulose films by direct functionalization of the surface with dehydroabietic acid derivatives. Our conceptually unique design generates non-leaching anionic surfaces that reduce the number of viable staphylococci in suspension, including drug-resistant Staphylococcus aureus, by an impressive 4-5 log units, upon contact. Moreover, the films clearly prevent bacterial colonization of the surface in a model mimicking the physiological environment in chronic wounds. Their activity is not hampered by high protein content, and they nurture fibroblast growth at the surface without causing significant hemolysis. In this work, we have generated nanocellulose films with indisputable antimicrobial activity demonstrated using state-of-the-art models that best depict an "in vivo scenario". Our approach is to use fully renewable polymers and find suitable alternatives to silver and cationic antimicrobials. en
dc.format.extent 14
dc.format.extent 4095-4108
dc.format.mimetype application/pdf
dc.language.iso en en
dc.relation.ispartofseries ACS Applied Bio Materials en
dc.relation.ispartofseries Volume 3, issue 7 en
dc.rights openAccess en
dc.title Non-leaching, Highly Biocompatible Nanocellulose Surfaces That Efficiently Resist Fouling by Bacteria in an Artificial Dermis Model en
dc.type A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä fi
dc.description.version Peer reviewed en
dc.contributor.department University of Helsinki
dc.contributor.department Department of Bioproducts and Biosystems
dc.contributor.department University of Strathclyde
dc.contributor.department Leibniz-Institut für Polymerforschung Dresden e. V.
dc.contributor.department Ghent University
dc.contributor.department Bioproduct Chemistry
dc.subject.keyword antimicrobial
dc.subject.keyword biofilm
dc.subject.keyword cellulose nanofibril
dc.subject.keyword dehydroabietic acid
dc.subject.keyword surface
dc.identifier.urn URN:NBN:fi:aalto-2020113020678
dc.identifier.doi 10.1021/acsabm.0c00203
dc.type.version publishedVersion

Files in this item

Files Size Format View

There are no open access files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search archive

Advanced Search

article-iconSubmit a publication