dc.contributor |
Aalto-yliopisto |
fi |
dc.contributor |
Aalto University |
en |
dc.contributor.author |
Matakos, Antonis |
|
dc.contributor.author |
Tu, Sijing |
|
dc.contributor.author |
Gionis, Aristides |
|
dc.date.accessioned |
2020-11-30T08:13:03Z |
|
dc.date.available |
2020-11-30T08:13:03Z |
|
dc.date.issued |
2020-09-01 |
|
dc.identifier.citation |
Matakos , A , Tu , S & Gionis , A 2020 , ' Tell me something my friends do not know : diversity maximization in social networks ' , Knowledge and Information Systems , vol. 62 , no. 9 , pp. 3697-3726 . https://doi.org/10.1007/s10115-020-01456-1 |
en |
dc.identifier.issn |
0219-1377 |
|
dc.identifier.issn |
0219-3116 |
|
dc.identifier.other |
PURE UUID: 381d4f2b-37be-479b-abea-c4da3581c6d4 |
|
dc.identifier.other |
PURE ITEMURL: https://research.aalto.fi/en/publications/381d4f2b-37be-479b-abea-c4da3581c6d4 |
|
dc.identifier.other |
PURE LINK: http://www.scopus.com/inward/record.url?scp=85084140645&partnerID=8YFLogxK |
|
dc.identifier.other |
PURE FILEURL: https://research.aalto.fi/files/53400673/Matakos2020_Article_TellMeSomethingMyFriendsDoNotK.pdf |
|
dc.identifier.uri |
https://aaltodoc.aalto.fi/handle/123456789/61679 |
|
dc.description |
| openaire: EC/H2020/654024/EU//SoBigData |
|
dc.description.abstract |
Social media have a great potential to improve information dissemination in our society, yet they have been held accountable for a number of undesirable effects, such as polarization and filter bubbles. It is thus important to understand these negative phenomena and develop methods to combat them. In this paper, we propose a novel approach to address the problem of breaking filter bubbles in social media. We do so by aiming to maximize the diversity of the information exposed to connected social-media users. We formulate the problem of maximizing the diversity of exposure as a quadratic-knapsack problem. We show that the proposed diversity-maximization problem is inapproximable, and thus, we resort to polynomial nonapproximable algorithms, inspired by solutions developed for the quadratic-knapsack problem, as well as scalable greedy heuristics. We complement our algorithms with instance-specific upper bounds, which are used to provide empirical approximation guarantees for the given problem instances. Our experimental evaluation shows that a proposed greedy algorithm followed by randomized local search is the algorithm of choice given its quality-vs.-efficiency trade-off. |
en |
dc.format.extent |
30 |
|
dc.format.extent |
3697-3726 |
|
dc.format.mimetype |
application/pdf |
|
dc.language.iso |
en |
en |
dc.publisher |
Springer London |
|
dc.relation |
info:eu-repo/grantAgreement/EC/H2020/654024/EU//SoBigData |
|
dc.relation.ispartofseries |
Knowledge and Information Systems |
en |
dc.relation.ispartofseries |
Volume 62, issue 9 |
en |
dc.rights |
openAccess |
en |
dc.title |
Tell me something my friends do not know |
en |
dc.type |
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä |
fi |
dc.description.version |
Peer reviewed |
en |
dc.contributor.department |
Department of Computer Science |
|
dc.contributor.department |
Helsinki Institute for Information Technology (HIIT) |
|
dc.subject.keyword |
Combinatorial optimization |
|
dc.subject.keyword |
Diversity maximization |
|
dc.subject.keyword |
Filter bubble |
|
dc.subject.keyword |
Greedy algorithms |
|
dc.subject.keyword |
Quadratic knapsack |
|
dc.identifier.urn |
URN:NBN:fi:aalto-2020113020524 |
|
dc.identifier.doi |
10.1007/s10115-020-01456-1 |
|
dc.type.version |
publishedVersion |
|