dc.contributor |
Aalto-yliopisto |
fi |
dc.contributor |
Aalto University |
en |
dc.contributor.author |
Menczel, Paul |
|
dc.contributor.author |
Flindt, Christian |
|
dc.contributor.author |
Brandner, Kay |
|
dc.date.accessioned |
2020-11-30T08:10:28Z |
|
dc.date.available |
2020-11-30T08:10:28Z |
|
dc.date.issued |
2020-09-21 |
|
dc.identifier.citation |
Menczel , P , Flindt , C & Brandner , K 2020 , ' Quantum jump approach to microscopic heat engines ' , PHYSICAL REVIEW RESEARCH , vol. 2 , no. 3 , 033449 . https://doi.org/10.1103/PhysRevResearch.2.033449 |
en |
dc.identifier.issn |
2643-1564 |
|
dc.identifier.other |
PURE UUID: 0517efba-6db4-4210-b5fb-204ea6051e7e |
|
dc.identifier.other |
PURE ITEMURL: https://research.aalto.fi/en/publications/0517efba-6db4-4210-b5fb-204ea6051e7e |
|
dc.identifier.other |
PURE FILEURL: https://research.aalto.fi/files/53400733/Menczel_Quantum.PhysRevResearch.2.033449_1.pdf |
|
dc.identifier.uri |
https://aaltodoc.aalto.fi/handle/123456789/61629 |
|
dc.description.abstract |
Modern technologies could soon make it possible to investigate the operation cycles of quantum heat engines by counting the photons that are emitted and absorbed by their working systems. Using the quantum jump approach to open-system dynamics, we show that such experiments would give access to a set of observables that determine the trade-off between power and efficiency in finite-time engine cycles. By analyzing the single-jump statistics of thermodynamic fluxes such as heat and entropy production, we obtain a family of general bounds on the power of microscopic heat engines. Our new bounds unify two earlier results and admit a transparent physical interpretation in terms of single-photon measurements. In addition, these bounds confirm that driving-induced coherence leads to an increase in dissipation that suppresses the efficiency of slowly driven quantum engines in the weak-coupling regime. A nanoscale heat engine based on a superconducting qubit serves as an experimentally relevant example and a guiding paradigm for the development of our theory. |
en |
dc.format.extent |
15 |
|
dc.format.mimetype |
application/pdf |
|
dc.language.iso |
en |
en |
dc.publisher |
American Physical Society |
|
dc.relation.ispartofseries |
PHYSICAL REVIEW RESEARCH |
en |
dc.relation.ispartofseries |
Volume 2, issue 3 |
en |
dc.rights |
openAccess |
en |
dc.title |
Quantum jump approach to microscopic heat engines |
en |
dc.type |
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä |
fi |
dc.description.version |
Peer reviewed |
en |
dc.contributor.department |
Centre of Excellence in Quantum Technology, QTF |
|
dc.contributor.department |
University of Nottingham |
|
dc.contributor.department |
Department of Applied Physics |
en |
dc.subject.keyword |
Fluctuations |
|
dc.subject.keyword |
Nonequilibrium and irreversible thermodynamics |
|
dc.subject.keyword |
quantum coherence |
|
dc.subject.keyword |
Quantum thermodynamics |
|
dc.subject.keyword |
Heat engines |
|
dc.identifier.urn |
URN:NBN:fi:aalto-2020113020474 |
|
dc.identifier.doi |
10.1103/PhysRevResearch.2.033449 |
|
dc.type.version |
publishedVersion |
|