Learning Centre

Quantum jump approach to microscopic heat engines

 |  Login

Show simple item record

dc.contributor Aalto-yliopisto fi
dc.contributor Aalto University en
dc.contributor.author Menczel, Paul
dc.contributor.author Flindt, Christian
dc.contributor.author Brandner, Kay
dc.date.accessioned 2020-11-30T08:10:28Z
dc.date.available 2020-11-30T08:10:28Z
dc.date.issued 2020-09-21
dc.identifier.citation Menczel , P , Flindt , C & Brandner , K 2020 , ' Quantum jump approach to microscopic heat engines ' , PHYSICAL REVIEW RESEARCH , vol. 2 , no. 3 , 033449 . https://doi.org/10.1103/PhysRevResearch.2.033449 en
dc.identifier.issn 2643-1564
dc.identifier.other PURE UUID: 0517efba-6db4-4210-b5fb-204ea6051e7e
dc.identifier.other PURE ITEMURL: https://research.aalto.fi/en/publications/quantum-jump-approach-to-microscopic-heat-engines(0517efba-6db4-4210-b5fb-204ea6051e7e).html
dc.identifier.other PURE FILEURL: https://research.aalto.fi/files/53400733/Menczel_Quantum.PhysRevResearch.2.033449_1.pdf
dc.identifier.uri https://aaltodoc.aalto.fi/handle/123456789/61629
dc.description.abstract Modern technologies could soon make it possible to investigate the operation cycles of quantum heat engines by counting the photons that are emitted and absorbed by their working systems. Using the quantum jump approach to open-system dynamics, we show that such experiments would give access to a set of observables that determine the trade-off between power and efficiency in finite-time engine cycles. By analyzing the single-jump statistics of thermodynamic fluxes such as heat and entropy production, we obtain a family of general bounds on the power of microscopic heat engines. Our new bounds unify two earlier results and admit a transparent physical interpretation in terms of single-photon measurements. In addition, these bounds confirm that driving-induced coherence leads to an increase in dissipation that suppresses the efficiency of slowly driven quantum engines in the weak-coupling regime. A nanoscale heat engine based on a superconducting qubit serves as an experimentally relevant example and a guiding paradigm for the development of our theory. en
dc.format.extent 15
dc.format.mimetype application/pdf
dc.language.iso en en
dc.publisher American Physical Society
dc.relation.ispartofseries PHYSICAL REVIEW RESEARCH en
dc.relation.ispartofseries Volume 2, issue 3 en
dc.rights openAccess en
dc.title Quantum jump approach to microscopic heat engines en
dc.type A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä fi
dc.description.version Peer reviewed en
dc.contributor.department Centre of Excellence in Quantum Technology, QTF
dc.contributor.department University of Nottingham
dc.contributor.department Department of Applied Physics en
dc.subject.keyword Fluctuations
dc.subject.keyword Nonequilibrium and irreversible thermodynamics
dc.subject.keyword quantum coherence
dc.subject.keyword Quantum thermodynamics
dc.subject.keyword Heat engines
dc.identifier.urn URN:NBN:fi:aalto-2020113020474
dc.identifier.doi 10.1103/PhysRevResearch.2.033449
dc.type.version publishedVersion


Files in this item

Files Size Format View

There are no open access files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search archive


Advanced Search

article-iconSubmit a publication

Browse

Statistics