Title: | Speeding up the inference in Gaussian process models |
Author(s): | Vanhatalo, Jarno |
Date: | 2010 |
Language: | en |
Pages: | Verkkokirja (580 KB, 43 s.) |
Department: | Lääketieteellisen tekniikan ja laskennallisen tieteen laitos Department of Biomedical Engineering and Computational Science |
ISBN: | 978-952-60-3381-5 (electronic) 978-952-60-3380-8 (printed) |
Series: | Department of Biomedical Engineering and Computational Science publications. A, Report, 23 |
Supervising professor(s): | Lampinen, Jouko, Prof. |
Thesis advisor(s): | Vehtari, Aki, Dr. Tech. |
Subject: | Computer science, Mathematics |
Keywords: | sparse Gaussian process, approximate inference, compactly supported covariance function |
OEVS yes | |
|
|
Abstract:In this dissertation Gaussian processes are used to define prior distributions over latent functions in hierarchical Bayesian models. Gaussian process is a non-parametric model with which one does not need to fix the functional form of the latent function, but its properties can be defined implicitly. These implicit statements are encoded in the mean and covariance function, which determine, for example, the smoothness and variability of the function. This non-parametric nature of the Gaussian process gives rise to a flexible and diverse class of probabilistic models.
|
|
Parts:[Publication 1]: Jarno Vanhatalo and Aki Vehtari. 2007. Sparse log Gaussian processes via MCMC for spatial epidemiology. In: Neil Lawrence, Anton Schwaighofer, and Joaquin Quiñonero Candela (editors). Gaussian Processes in Practice. JMLR: Workshop and Conference Proceedings, volume 1, pages 73-89. © 2007 by authors.[Publication 2]: Jarno Vanhatalo and Aki Vehtari. 2008. Modelling local and global phenomena with sparse Gaussian processes. In: David A. McAllester and Petri Myllymäki (editors). Proceedings of the 24th Conference on Uncertainty in Artificial Intelligence (UAI 2008). Helsinki, Finland. 9-12 July 2008. Corvallis, Oregon, USA. AUAI Press. Pages 571-578. ISBN 0-9749039-4-9. © 2008 by authors.[Publication 3]: Jarno Vanhatalo, Pasi Jylänki, and Aki Vehtari. 2009. Gaussian process regression with Student-t likelihood. In: Yoshua Bengio, Dale Schuurmans, John Lafferty, Chris Williams, and Aron Culotta (editors). Advances in Neural Information Processing Systems. Proceedings of the Twenty-Third Annual Conference on Neural Information Processing Systems (NIPS 2009). Vancouver, BC, Canada. 7-10 December 2009. Red Hook, NY, USA. Curran Associates. Volume 22, pages 1910-1918. ISBN 978-1-615679-11-9. © 2009 by authors.[Publication 4]: Jarno Vanhatalo, Ville Pietiläinen, and Aki Vehtari. 2010. Approximate inference for disease mapping with sparse Gaussian processes. Statistics in Medicine, volume 29, number 15, pages 1580-1607. © 2010 John Wiley & Sons. By permission.[Publication 5]: Jarno Vanhatalo and Aki Vehtari. 2010. Speeding up the binary Gaussian process classification. In: Peter Grünwald and Peter Spirtes (editors). Proceedings of the 26th Conference on Uncertainty in Artificial Intelligence (UAI 2010). Catalina Island, California, USA. 8-11 July 2010. Corvallis, Oregon, USA. AUAI Press. Pages 623-631. © 2010 by authors.[Publication 6]: Jarno Vanhatalo, Pia Mäkelä, and Aki Vehtari. 2010. Regional differences in alcohol mortality in Finland in the early 2000s. Espoo, Finland: Aalto University School of Science and Technology. 12 pages. Helsinki University of Technology, Department of Biomedical Engineering and Computational Science Publications, Report A20. ISBN 978-952-60-3335-8. ISSN 1797-3996. Translation of the original Finnish article: Jarno Vanhatalo, Pia Mäkelä, and Aki Vehtari. 2010. Alkoholikuolleisuuden alueelliset erot Suomessa 2000-luvun alussa. Yhteiskuntapolitiikka, volume 75, number 3, pages 265-273. © 2010 by authors. |
|
|
Unless otherwise stated, all rights belong to the author. You may download, display and print this publication for Your own personal use. Commercial use is prohibited.
Page content by: Aalto University Learning Centre | Privacy policy of the service | About this site