Bioinformatics approaches for the analysis of lipidomics data

 |  Login

Show simple item record

dc.contributor Aalto-yliopisto fi
dc.contributor Aalto University en
dc.contributor.advisor Oresic, Matej, Research Prof., VTT
dc.contributor.author Yetukuri, Laxmana Rao
dc.date.accessioned 2012-08-24T11:31:01Z
dc.date.available 2012-08-24T11:31:01Z
dc.date.issued 2010
dc.identifier.isbn 978-951-38-7403-2 (electronic)
dc.identifier.isbn 978-951-38-7402-5 (printed) #8195;
dc.identifier.issn 1455-0849
dc.identifier.uri https://aaltodoc.aalto.fi/handle/123456789/4805
dc.description.abstract The potential impact of lipid research has been increasingly realised both in disease treatment and prevention. Recent advances in soft ionization mass spectrometry (MS) such as electrospray ionization (ESI) have permitted parallel monitoring of several hundreds of lipids in a single experiment and thus facilitated lipidomics level studies. These advances, however, pose a greater challenge for bioinformaticians to handle massive amounts of information-rich MS data from modern analytical instruments in order to understand complex functions of lipids. The main aims of this thesis were to 1) develop bioinformatics approaches for lipid identification based on ultra performance liquid chromatography coupled to mass spectrometry (UPLC/MS) data, 2) predict the functional annotations for unidentified lipids, 3) understand the omics data in the context of pathways and 4) apply existing chemometric methods for exploratory data analysis as well as biomarker discovery. A bioinformatics strategy for the construction of lipid database for major classes of lipids is presented using simplified molecular input line entry system (SMILES) approach. The database was annotated with relevant information such as lipid names including short names, SMILES information, scores, molecular weight, monoisotopic mass, and isotope distribution. The database was tailored for UPLC/MS experiments by incorporating the information such as retention time range, adduct information and main fragments to screen for the potential lipids. This database information facilitated building experimental tandem mass spectrometry libraries for different biological tissues. Non-targeted metabolomics screening is often get plagued by the presence of unknown peaks and thus present an additional challenge for data interpretation. Multiple supervised classification methods were employed and compared for the functional prediction of class labels for unidentified lipids to facilitate exploratory analysis further as well as ease the identification process. As lipidomics goes beyond complete characterization of lipids, new strategies were developed to understand lipids in the context of pathways and thereby providing insights for the phenotype characterization. Chemometric methods such as principal component analysis (PCA) and partial least squares and discriminant analysis (PLS/DA) were utilised for exploratory analysis as well as biomarker discovery in the context of different disease phenotypes. en
dc.format.extent Verkkokirja (752 KB, 75 s.)
dc.format.mimetype application/pdf
dc.language.iso en en
dc.publisher VTT en
dc.relation.ispartofseries VTT publications, 741 en
dc.relation.haspart [Publication 1]: L. Yetukuri, M. Katajamaa, G. Medina-Gomez, T. Seppänen-Laakso, A. Vidal-Puig, and M. Orešič (2007) Bioinformatics strategies for lipidomics analysis: characterization of obesity related hepatic steatosis, BMC Syst. Biol. 1: 12. © 2007 by authors. en
dc.relation.haspart [Publication 2]: L. Yetukuri, J. Tikka, J. Hollmén, and M. Orešič (2010) Functional prediction of unidentified lipids using supervised classifiers, Metabolomics 6: 18-26. en
dc.relation.haspart [Publication 3]: L. Yetukuri, S. Söderlund, A. Koivuniemi, T. Seppänen-Laakso, P. S. Niemelä, M. Hyvönen, M.-R. Taskinen, I. Vattulainen, M. Jauhiainen, and M. Orešič (2010) Composition and lipid spatial distribution of High Density Lipoprotein particles in subjects with low and high HDL-cholesterol, J. Lipid Res. In press. © 2010 American Society for Biochemistry and Molecular Biology (ASBMB). By permission. en
dc.relation.haspart [Publication 4]: G. Medina-Gomez, L. Yetukuri, V. Velagapudi, M. Campbell, M. Blount, M. Jimenez-Linan, M. Ros, M. Orešič, and A. Vidal-Puig (2009) Adaptation and failure of pancreatic β cells in murine models with different degrees of metabolic syndrome, Dis. Model. Mech. 2: 582-592. © 2009 by authors. en
dc.relation.haspart [Publication 5]: G. Medina-Gomez, S. L. Gray, L. Yetukuri, K. Shimomura, S. Virtue, M. Campbell, R. K. Curtis, M. Jimenez-Linan, M. Blount, G. S. H. Yeo, M. Lopez, T. Seppänen-Laakso, F. M. Ashcroft, M. Orešič, and A. Vidal-Puig (2007) PPAR gamma 2 prevents lipotoxicity by controlling adipose tissue expandability and peripheral lipid metabolism, PLoS Genet. 3: e64. © 2007 by authors. en
dc.relation.haspart [Publication 6]: A. Kotronen, V. R. Velagapudi, L. Yetukuri, J. Westerbacka, R. Bergholm, K. Ekroos, J. Makkonen, M.-R. Taskinen, M. Orešič, and H. Yki-Järvinen (2009) Serum saturated fatty acids containing triacylglycerols are better markers of insulin resistance than total serum triacylglycerol concentrations, Diabetologia 52: 684-690. en
dc.subject.other Biotechnology
dc.title Bioinformatics approaches for the analysis of lipidomics data en
dc.type G5 Artikkeliväitöskirja fi
dc.contributor.school Aalto-yliopiston teknillinen korkeakoulu fi
dc.contributor.school Informaatio- ja luonnontieteiden tiedekunta fi
dc.contributor.department Department of Biomedical Engineering and Computational Science en
dc.contributor.department Lääketieteellisen tekniikan ja laskennallisen tieteen laitos fi
dc.subject.keyword lipids en
dc.subject.keyword lipidomics en
dc.subject.keyword bioinformatics en
dc.subject.keyword lipid pathways en
dc.subject.keyword high density lipoproteins en
dc.subject.keyword k-nearest neighbours en
dc.subject.keyword liquid chromatography/mass spectrometry en
dc.subject.keyword principal component analysis en
dc.subject.keyword partial least squares and discriminant analysis en
dc.subject.keyword obesity support vector machines en
dc.subject.keyword lipidDB en
dc.identifier.urn URN:ISBN:978-951-38-7403-2
dc.type.dcmitype text en
dc.type.ontasot Väitöskirja (artikkeli) fi
dc.type.ontasot Doctoral dissertation (article-based) en
dc.contributor.supervisor Kaski, Kimmo, Prof.


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search archive


Advanced Search

article-iconSubmit a publication

Browse

My Account