Data integration, pathway analysis and mining for systems biology

 |  Login

Show simple item record

dc.contributor Aalto-yliopisto fi
dc.contributor Aalto University en
dc.contributor.advisor Oresic, Matej, Research Prof., VTT
dc.contributor.author Peddinti, Venkata Gopalacharyulu
dc.date.accessioned 2012-08-24T11:23:53Z
dc.date.available 2012-08-24T11:23:53Z
dc.date.issued 2010
dc.identifier.isbn 978-951-38-7386-8 (electronic)
dc.identifier.isbn 978-951-38-7385-1 (printed) #8195;
dc.identifier.issn 1455-0849
dc.identifier.uri https://aaltodoc.aalto.fi/handle/123456789/4791
dc.description.abstract Post-genomic molecular biology embodies high-throughput experimental techniques and hence is a data-rich field. The goal of this thesis is to develop bioinformatics methods to utilise publicly available data in order to produce knowledge and to aid mining of newly generated data. As an example of knowledge or hypothesis generation, consider function prediction of biological molecules. Assignment of protein function is a non-trivial task owing to the fact that the same protein may be involved in different biological processes, depending on the state of the biological system and protein localisation. The function of a gene or a gene product may be provided as a textual description in a gene or protein annotation database. Such textual descriptions lack in providing the contextual meaning of the gene function. Therefore, we need ways to represent the meaning in a formal way. Here we apply data integration approach to provide rich representation that enables context-sensitive mining of biological data in terms of integrated networks and conceptual spaces. Context-sensitive gene function annotation follows naturally from this framework, as a particular application. Next, knowledge that is already publicly available can be used to aid mining of new experimental data. We developed an integrative bioinformatics method that utilises publicly available knowledge of protein-protein interactions, metabolic networks and transcriptional regulatory networks to analyse transcriptomics data and predict altered biological processes. We applied this method to a study of dynamic response of Saccharomyces cerevisiae to oxidative stress. The application of our method revealed dynamically altered biological functions in response to oxidative stress, which were validated by comprehensive in vivo metabolomics experiments. The results provided in this thesis indicate that integration of heterogeneous biological data facilitates advanced mining of the data. The methods can be applied for gaining insight into functions of genes, gene products and other molecules, as well as for offering functional interpretation to transcriptomics and metabolomics experiments. en
dc.format.extent Verkkokirja (1336 KB, 62 s.)
dc.format.mimetype application/pdf
dc.language.iso en en
dc.publisher VTT en
dc.relation.ispartofseries VTT publications en
dc.relation.ispartofseries 732
dc.relation.haspart [Publication 1]: Peddinti V. Gopalacharyulu, Erno Lindfors, Catherine Bounsaythip, Teemu Kivioja, Laxman Yetukuri, Jaakko Hollmén, and Matej Orešič. Data integration and visualization system for enabling conceptual biology. Bioinformatics, 21 Suppl 1:i177-i185, Jun 2005. © 2005 by authors. en
dc.relation.haspart [Publication 2]: Peddinti V. Gopalacharyulu, Erno Lindfors, Jarkko Miettinen, Catherine Bounsaythip, and Matej Orešič. An integrative approach for biological data mining and visualisation. Int. J. Data mining and Bioinformatics, 2(1):54-77, Jan 2008. © 2008 Inderscience Enterprises. By permission. en
dc.relation.haspart [Publication 3]: Peddinti V. Gopalacharyulu, Erno Lindfors, Catherine Bounsaythip, and Matej Orešič. Context dependent visualization of protein function. In Juho Rousu, Samuel Kaski, and Esko Ukkonen, editors, Probabilistic Modeling and Machine Learning in Structural and Systems Biology, pages 26-31, Tuusula, Finland, Jun 2006. © 2006 by authors. en
dc.relation.haspart [Publication 4]: Catherine Bounsaythip, Erno Lindfors, Peddinti V. Gopalacharyulu, Jaakko Hollmén, and Matej Orešič. Network-based representation of biological data for enabling context-based mining. In Catherine Bounsaythip, Jaakko Hollmén, Samuel Kaski, and Matej Orešič, editors, Proceedings of KRBIO'05, International Symposium on Knowledge Representation in Bioinformatics, pages 1-6, Espoo, Finland, Jun 2005. Helsinki University of Technology, Laboratory of Computer and Information Science. © 2005 by authors. en
dc.relation.haspart [Publication 5]: Peddinti V. Gopalacharyulu, Vidya R. Velagapudi, Erno Lindfors, Eran Halperin, and Matej Orešič. Dynamic network topology changes in functional modules predict responses to oxidative stress in yeast. Mol. BioSyst., 5:276-287, 2009. en
dc.subject.other Biotechnology
dc.subject.other Computer science
dc.title Data integration, pathway analysis and mining for systems biology en
dc.type G5 Artikkeliväitöskirja fi
dc.contributor.school Informaatio- ja luonnontieteiden tiedekunta fi
dc.contributor.department Department of Biomedical Engineering and Computational Science en
dc.contributor.department Neurotieteen ja lääketieteellisen tekniikan laitos fi
dc.subject.keyword systems biology en
dc.subject.keyword high-throughput data en
dc.subject.keyword data integration en
dc.subject.keyword data mining en
dc.subject.keyword visualisation en
dc.subject.keyword bioinformatics en
dc.subject.keyword conceptual spaces en
dc.subject.keyword network topology en
dc.identifier.urn URN:ISBN:978-951-38-7386-8
dc.type.dcmitype text en
dc.type.ontasot Väitöskirja (artikkeli) fi
dc.type.ontasot Doctoral dissertation (article-based) en
dc.contributor.supervisor Kaski, Kimmo, Prof.


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search archive


Advanced Search

article-iconSubmit a publication

Browse

My Account