Stress relaxation in supported metallic nanostructures

 |  Login

Show simple item record

dc.contributor Aalto-yliopisto fi
dc.contributor Aalto University en
dc.contributor.advisor Ala-Nissilä, Tapio, Prof.
dc.contributor.author Jalkanen, Jari
dc.date.accessioned 2012-08-24T11:22:41Z
dc.date.available 2012-08-24T11:22:41Z
dc.date.issued 2010
dc.identifier.isbn 978-952-60-3149-1 (electronic)
dc.identifier.isbn 978-952-60-3148-4 (printed) #8195;
dc.identifier.issn 1795-4584
dc.identifier.uri https://aaltodoc.aalto.fi/handle/123456789/4789
dc.description.abstract Ultrathin clean overlayers are often under mechanical stress because the atomic structures of the substrate and the adsorbate cannot be matched without strain. If the stress energies are comparable to the interface and surface energies, the system is heteroepitaxial. The self-assembly phenomena caused by stress release mechanisms of heteroepitaxial systems have application potential in nanotechnology. In this thesis we study two phenomena where the overlayer adopts a certain structure to release stress. In the first phenomenon the material forms islands on the supporting surface while in the second case the overlayer stays flat but nucleates a set of defects. The computational modeling used in the studies is based on coarse-grained, atomistic methods. We apply a simplified, two-dimensional model on the islands. It turns out that the model can describe all the common growth modes and the most frequent island shape agrees with the literature. According to the model, the dependence of the most likely island shape on the coverage is determined by the balance between the surface and the stress energies and it does not depend significantly on the wetting films beneath the island. One can fit the model to a simple analytic formula which is capable of reproducing the numerical calculations. It can be said that the model used in this thesis is now understood fairly well. Our preliminary studies indicate that the generalization of the model for three-dimensional nanowires are in good agreement with the two-dimensional results. When we investigate defect generation in flat thin films, we choose to model a specific system in detail. To study copper on the close-packed palladium surface, we pick another physical model than what was used with the islands because a model which has been specifically taylored for these two materials can be compared to the experiments directly. It turned out that the overlayer forms stacking faults already in the submonolayer coverage regime. The finding is consistent with experimental data but calls for a new interpretation for the overlayer structure. en
dc.format.extent Verkkokirja (3028 KB, 58 s.)
dc.format.mimetype application/pdf
dc.language.iso en en
dc.publisher Aalto-yliopiston teknillinen korkeakoulu en
dc.relation.ispartofseries TKK dissertations, 224 en
dc.relation.haspart [Publication 1]: J. Jalkanen, O. Trushin, E. Granato, S. C. Ying, and T. Ala-Nissila. 2005. Equilibrium shape and dislocation nucleation in strained epitaxial nanoislands. Physical Review B, volume 72, number 8, 081403(R), 4 pages. doi:10.1103/PhysRevB.72.081403. © 2005 American Physical Society (APS). By permission. en
dc.relation.haspart [Publication 2]: J. Jalkanen, O. Trushin, K. Elder, E. Granato, S. C. Ying, and T. Ala-Nissilä. 2008. Two approaches to dislocation nucleation in the supported heteroepitaxial equilibrium islanding phenomenon. Journal of Physics: Conference Series, volume 100, number 7, 072043, 4 pages. doi:10.1088/1742-6596/100/7/072043. © 2008 Institute of Physics Publishing (IOPP). By permission. en
dc.relation.haspart [Publication 3]: J. Jalkanen, O. Trushin, E. Granato, S. C. Ying, and T. Ala-Nissila. 2008. Equilibrium shape and size of supported heteroepitaxial nanoislands. The European Physical Journal B, volume 66, number 2, pages 175-183. doi:10.1140/epjb/e2008-00410-8. © 2008 EDP Sciences and © 2008 Società Italiana di Fisica and © 2008 Springer-Verlag. By permission. en
dc.relation.haspart [Publication 4]: O. Trushin, J. Jalkanen, E. Granato, S. C. Ying, and T. Ala-Nissila. 2009. Atomistic studies of strain relaxation in heteroepitaxial systems. Journal of Physics: Condensed Matter, volume 21, number 8, 084211, 13 pages. doi:10.1088/0953-8984/21/8/084211. © 2009 Institute of Physics Publishing (IOPP). By permission. en
dc.relation.haspart [Publication 5]: J. Jalkanen, G. Rossi, O. Trushin, E. Granato, T. Ala-Nissila, and S.-C. Ying. 2010. Stress release mechanisms for Cu on Pd(111) in the submonolayer and monolayer regimes. Physical Review B, volume 81, number 4, 041412(R), 4 pages. doi:10.1103/PhysRevB.81.041412. © 2010 American Physical Society (APS). By permission. en
dc.subject.other Physics
dc.title Stress relaxation in supported metallic nanostructures en
dc.type G5 Artikkeliväitöskirja fi
dc.contributor.school Aalto-yliopiston teknillinen korkeakoulu fi
dc.contributor.department Teknillisen fysiikan laitos fi
dc.contributor.department Department of Applied Physics en
dc.subject.keyword thin films en
dc.subject.keyword nanotechnology en
dc.subject.keyword computational physics en
dc.identifier.urn URN:ISBN:978-952-60-3149-1
dc.type.dcmitype text en
dc.type.ontasot Väitöskirja (artikkeli) fi
dc.type.ontasot Doctoral dissertation (article-based) en
dc.contributor.supervisor Ala-Nissilä, Tapio, Prof.


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search archive


Advanced Search

article-iconSubmit a publication

Browse

My Account