Learning Centre

T-matrix modelling of plasmonic nanoparticle arrays

 |  Login

Show simple item record

dc.contributor Aalto-yliopisto fi
dc.contributor Aalto University en
dc.contributor.advisor Törmä, Päivi, prof., Aalto University, Finland
dc.contributor.advisor Martikainen, Jani-Petri, Dr., Aalto University, Finland
dc.contributor.author Nečada, Marek
dc.date.accessioned 2020-11-13T10:01:22Z
dc.date.available 2020-11-13T10:01:22Z
dc.date.issued 2020
dc.identifier.isbn 978-952-64-0152-2 (electronic)
dc.identifier.isbn 978-952-64-0151-5 (printed)
dc.identifier.issn 1799-4942 (electronic)
dc.identifier.issn 1799-4934 (printed)
dc.identifier.issn 1799-4934 (ISSN-L)
dc.identifier.uri https://aaltodoc.aalto.fi/handle/123456789/47623
dc.description.abstract Active nanoparticle arrays are an attractive platform for manipulating light-matter interactions on the nanoscale. The multiscale character of the optical response of those systems gives rise to exciting physical phenomena, but also makes precise numerical modelling challenging, as it encompasses the interplay of mid-to-long-range periodicity, response of the individual nanoparticles with spatial features much smaller than the wavelength, and possibly nonlinear dynamics of the active medium. This thesis focuses on the development of the multiple-scattering T-matrix method (MSTMM; also known as the superposition T-matrix method) and its applications in modelling the optical properties of plasmonic nanoparticle arrays. MSTMM is a linear model that combines a computationally efficient (due to a dramatic reduction of the degrees of freedom) yet precise description of the optical interactions between the nanoparticles with a faithful model of linear optical response of the individual nanoparticles. Chapter 1 reviews some of the commonly used approaches to the numerical simulations, compares their theoretical modelling capabilities and practical scalability with regards to nanoparticle arrays, and provides a motivation for employing the multiple-scattering T-matrix approach. Chapter 2 is dedicated to the theory of MSTMM and its developments aimed to broaden its applicability to a larger class of physical systems. Its first sections provide a brief guide through the basic concepts of vector spherical wavefunctions, T-matrix and translation operators that make the theoretical backbone of MSTMM in finite systems. The method is then expanded in two main directions: (1) Using exponentially convergent lattice summation, MSTMM is extended to infinite periodic arrays. This enables fast computation of transmission and (employing nonlinear eigensolvers) photonic band structure. (2) The computational efficiency of the method is enhanced by taking into consideration the symmetries of the arrays, which considerably improves the array sizes the method can handle in practice. The group theoretical considerations also find their use in lattice mode analysis. Chapter 3 showcases MSTMM on several examples, including analysis of some real-world lasing experiments with plasmonic nanoarrays, where the method was used for explaining the observed lasing modes. Chapter 4 discusses possible utilisation of MSTMM in nonclassical context, mainly in the framework of macroscopic quantum electrodynamics. en
dc.format.extent 70 + app. 124
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.publisher Aalto University en
dc.publisher Aalto-yliopisto fi
dc.relation.ispartofseries Aalto University publication series DOCTORAL DISSERTATIONS en
dc.relation.ispartofseries 194/2020
dc.relation.haspart [Publication 1]: M. Nečada and P. Törmä. Multiple-scattering T-matrix simulations for nanophotonics: symmetries and periodic lattices. Submitted to Communications in Computational Physics, July 2020
dc.relation.haspart [Publication 2]: T.K. Hakala, H.T. Rekola, A. I. Väkeväinen, J.-P. Martikainen, M. Nečada, A.J. Moilanen, and P. Törmä. Lasing in dark and bright modes of a finite-sized plasmonic lattice. Nature Communications, 8, 13687, January 2017. DOI: 10.1038/ncomms13687
dc.relation.haspart [Publication 3]: S. Pourjamal, T.K. Hakala, M. Nečada, F. Freire-Fernández, M. Kataja, H. Rekola, J.-P. Martikainen, P. Törmä, and S. van Dijken. Lasing in Ni Nanodisk Arrays. ACS Nano, 13, 5686, April 2019. DOI: 10.1021/acsnano.9b01006
dc.relation.haspart [Publication 4]: R. Guo, M. Nečada, T.K. Hakala, A.I. Väkeväinen, and P. Törmä. Lasing at K Points of a Honeycomb Plasmonic Lattice. Physical Review Letters, 122, 013901, January 2019. DOI: 10.1103/PhysRevLett.122.013901
dc.relation.haspart [Publication 5]: M. Nečada, J.-P. Martikainen, and P. Törmä. Quantum emitter dipole- dipole interactions in nanoplasmonic systems. International Journal of Modern Physics B, 31, 17400006, August 2017. DOI: 10.1142/S0217979217400069
dc.subject.other Physics en
dc.title T-matrix modelling of plasmonic nanoparticle arrays en
dc.type G5 Artikkeliväitöskirja fi
dc.contributor.school Perustieteiden korkeakoulu fi
dc.contributor.school School of Science en
dc.contributor.department Teknillisen fysiikan laitos fi
dc.contributor.department Department of Applied Physics en
dc.subject.keyword nanophotonics en
dc.subject.keyword plasmonics en
dc.subject.keyword T-matrix en
dc.subject.keyword scattering en
dc.subject.keyword nanoparticle arrays en
dc.identifier.urn URN:ISBN:978-952-64-0152-2
dc.type.dcmitype text en
dc.type.ontasot Doctoral dissertation (article-based) en
dc.type.ontasot Väitöskirja (artikkeli) fi
dc.contributor.supervisor Törmä, Päivi, Prof., Aalto University, Department of Applied Physics, Finland
dc.opn Giannini Vincenzo, Dr., CSIC, Spain
dc.contributor.lab Quantum Dynamics en
dc.rev Setälä, Tero, Prof., University of Eastern Finland, Finland
dc.rev Greffet, Jean-Jacques, Prof., Institut d'Optique, France
dc.date.defence 2020-11-27
local.aalto.acrisexportstatus checked 2020-12-28_1917
local.aalto.infra Science-IT
local.aalto.formfolder 2020_11_12_klo_15_01
local.aalto.archive yes

Files in this item

This item appears in the following Collection(s)

Show simple item record

Search archive

Advanced Search

article-iconSubmit a publication