dc.contributor |
Aalto-yliopisto |
fi |
dc.contributor |
Aalto University |
en |
dc.contributor.author |
Tylutki, Marek |
|
dc.contributor.author |
Astrakharchik, Grigori E. |
|
dc.contributor.author |
Malomed, Boris A. |
|
dc.contributor.author |
Petrov, Dmitry S. |
|
dc.date.accessioned |
2020-06-25T08:36:57Z |
|
dc.date.available |
2020-06-25T08:36:57Z |
|
dc.date.issued |
2020-05-21 |
|
dc.identifier.citation |
Tylutki , M , Astrakharchik , G E , Malomed , B A & Petrov , D S 2020 , ' Collective excitations of a one-dimensional quantum droplet ' , Physical Review A , vol. 101 , no. 5 , 051601 . https://doi.org/10.1103/PhysRevA.101.051601 |
en |
dc.identifier.issn |
2469-9926 |
|
dc.identifier.issn |
2469-9934 |
|
dc.identifier.other |
PURE UUID: 3270114f-b217-4cf0-aa10-35950456a983 |
|
dc.identifier.other |
PURE ITEMURL: https://research.aalto.fi/en/publications/3270114f-b217-4cf0-aa10-35950456a983 |
|
dc.identifier.other |
PURE LINK: http://www.scopus.com/inward/record.url?scp=85085843956&partnerID=8YFLogxK |
|
dc.identifier.other |
PURE FILEURL: https://research.aalto.fi/files/43269081/PhysRevA.101.051601.pdf |
|
dc.identifier.uri |
https://aaltodoc.aalto.fi/handle/123456789/45103 |
|
dc.description.abstract |
We calculate the excitation spectrum of a one-dimensional self-bound quantum droplet in a two-component bosonic mixture described by the Gross-Pitaevskii equation (GPE) with cubic and quadratic nonlinearities. The cubic term originates from the mean-field energy of the mixture proportional to the effective coupling constant δg, whereas the quadratic nonlinearity corresponds to the attractive beyond-mean-field contribution. The droplet properties are governed by a control parameter γ∞δgN2/3, where N is the particle number. For large γ>0, the droplet features the flat-top shape with the discrete part of its spectrum consisting of plane-wave Bogoliubov phonons propagating through the flat-density bulk and reflected by edges of the droplet. With decreasing γ, these modes cross into the continuum, sequentially crossing the particle-emission threshold at specific critical values. A notable exception is the breathing mode, which we find to be always bound. The balance point γ=0 provides implementation of a system governed by the GPE with an unusual quadratic nonlinearity. This case is characterized by the ratio of the breathing-mode frequency to the particle-emission threshold equal to 0.8904. As γ tends to -∞, this ratio tends to 1 and the droplet transforms into the soliton solution of the integrable cubic GPE. |
en |
dc.format.mimetype |
application/pdf |
|
dc.language.iso |
en |
en |
dc.publisher |
American Physical Society |
|
dc.relation.ispartofseries |
Physical Review A |
en |
dc.relation.ispartofseries |
Volume 101, issue 5 |
en |
dc.rights |
openAccess |
en |
dc.title |
Collective excitations of a one-dimensional quantum droplet |
en |
dc.type |
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä |
fi |
dc.description.version |
Peer reviewed |
en |
dc.contributor.department |
Department of Applied Physics |
|
dc.contributor.department |
Polytechnic University of Catalonia |
|
dc.contributor.department |
Tel Aviv University |
|
dc.contributor.department |
University of Paris-Saclay |
|
dc.identifier.urn |
URN:NBN:fi:aalto-202006254060 |
|
dc.identifier.doi |
10.1103/PhysRevA.101.051601 |
|
dc.type.version |
publishedVersion |
|