Learning Centre

Collective excitations of a one-dimensional quantum droplet

 |  Login

Show simple item record

dc.contributor Aalto-yliopisto fi
dc.contributor Aalto University en
dc.contributor.author Tylutki, Marek
dc.contributor.author Astrakharchik, Grigori E.
dc.contributor.author Malomed, Boris A.
dc.contributor.author Petrov, Dmitry S.
dc.date.accessioned 2020-06-25T08:36:57Z
dc.date.available 2020-06-25T08:36:57Z
dc.date.issued 2020-05-21
dc.identifier.citation Tylutki , M , Astrakharchik , G E , Malomed , B A & Petrov , D S 2020 , ' Collective excitations of a one-dimensional quantum droplet ' , Physical Review A , vol. 101 , no. 5 , 051601 . https://doi.org/10.1103/PhysRevA.101.051601 en
dc.identifier.issn 2469-9926
dc.identifier.issn 2469-9934
dc.identifier.other PURE UUID: 3270114f-b217-4cf0-aa10-35950456a983
dc.identifier.other PURE ITEMURL: https://research.aalto.fi/en/publications/3270114f-b217-4cf0-aa10-35950456a983
dc.identifier.other PURE LINK: http://www.scopus.com/inward/record.url?scp=85085843956&partnerID=8YFLogxK
dc.identifier.other PURE FILEURL: https://research.aalto.fi/files/43269081/PhysRevA.101.051601.pdf
dc.identifier.uri https://aaltodoc.aalto.fi/handle/123456789/45103
dc.description.abstract We calculate the excitation spectrum of a one-dimensional self-bound quantum droplet in a two-component bosonic mixture described by the Gross-Pitaevskii equation (GPE) with cubic and quadratic nonlinearities. The cubic term originates from the mean-field energy of the mixture proportional to the effective coupling constant δg, whereas the quadratic nonlinearity corresponds to the attractive beyond-mean-field contribution. The droplet properties are governed by a control parameter γ∞δgN2/3, where N is the particle number. For large γ>0, the droplet features the flat-top shape with the discrete part of its spectrum consisting of plane-wave Bogoliubov phonons propagating through the flat-density bulk and reflected by edges of the droplet. With decreasing γ, these modes cross into the continuum, sequentially crossing the particle-emission threshold at specific critical values. A notable exception is the breathing mode, which we find to be always bound. The balance point γ=0 provides implementation of a system governed by the GPE with an unusual quadratic nonlinearity. This case is characterized by the ratio of the breathing-mode frequency to the particle-emission threshold equal to 0.8904. As γ tends to -∞, this ratio tends to 1 and the droplet transforms into the soliton solution of the integrable cubic GPE. en
dc.format.mimetype application/pdf
dc.language.iso en en
dc.publisher American Physical Society
dc.relation.ispartofseries Physical Review A en
dc.relation.ispartofseries Volume 101, issue 5 en
dc.rights openAccess en
dc.title Collective excitations of a one-dimensional quantum droplet en
dc.type A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä fi
dc.description.version Peer reviewed en
dc.contributor.department Department of Applied Physics
dc.contributor.department Polytechnic University of Catalonia
dc.contributor.department Tel Aviv University
dc.contributor.department University of Paris-Saclay
dc.identifier.urn URN:NBN:fi:aalto-202006254060
dc.identifier.doi 10.1103/PhysRevA.101.051601
dc.type.version publishedVersion


Files in this item

Files Size Format View

There are no open access files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search archive


Advanced Search

article-iconSubmit a publication

Browse

Statistics