This thesis studies the numerical solution and convergence of a certain discretized real-linear Beltrami equation. This equation arises in the uniqueness proof by Astala and Päivärinta for the two-dimensional electrical impedance tomography problem with nonsmooth conductivities. The real-linear matrix equation appearing after discretizing the Beltrami equation is found to have the form appropriate for the application of the real-linear Generalized Minimal Residual (GMRES) method published by Eirola, Huhtanen and von Pfaler.
The findings include a fast numerical solution method for the discretized real-linear Beltrami equation, and an implementation of a reconstruction method based on the Astala-Päivärinta uniqueness proof. The solution of the discretized Beltrami equation is shown to converge to the correct solution as the grid is refined, including a convergence rate estimate.
For the real-linear GMRES method, the norms of the residuals are bounded in terms of a polynomial approximation problem on the complex plane resembling the situation of classical GMRES. Moreover, complex symmetric matrices are shown to possess a mathematical framework analogous to the classical Hermitian Lanczos framework.
Väitöskirjassa tutkitaan erään diskretoidun reaalilineaarisen Beltramin yhtälön numeerista ratkaisemista ja suppenemista. Tämä yhtälö esiintyy Astalan ja Päivärinnan kaksiulotteisen sähköisen impedanssitomografian ongelman yksikäsitteisyystodistuksessa epäsileille johtavuuksille. Diskretoitua Beltramin yhtälöä vastaava reaalilineaarinen matriisiyhtälön nähdään olevan soveltuvaa muotoa Eirolan, Huhtasen ja von Pfalerin reaalilineaarisen GMRES (Generalized Minimal Residual) -menetelmän käytölle.
Tulokset sisältävät nopean numeerisen ratkaisumenetelmän diskretoidulle reaalilineaariselle Beltramin yhtälölle ja Astalan-Päivärinnan todistukseen perustuvan menetelmän toteutuksen. Diskretoidun Beltramin yhtälön ratkaisun osoitetaan suppenevan oikeaan ratkaisuun hilaa tihennettäessä sisältäen myös suppenemisnopeuden arvion.
Reaalilineaarisen GMRES-menetelmän jäännösvektoreiden normeille osoitetaan yläraja-arvio kompleksitason polynomiapproksimaatiotehtävän suhteen muistuttaen klassisen GMRES-menetelmän tilannetta. Lisäksi kompleksisymmetrisille matriiseille osoitetaan klassista hermiittisten matriisien Lanczosin matemaattista viitekehystä vastaavan kehyksen olemassaolo.