Learning Centre

Day-ahead Prediction of Building District Heat Demand for Smart Energy Management and Automation in Decentralized Energy Systems

 |  Login

Show simple item record

dc.contributor Aalto-yliopisto fi
dc.contributor Aalto University en
dc.contributor.author Eseye, Abinet Tesfaye
dc.contributor.author Lehtonen, Matti
dc.contributor.author Tukia, Toni
dc.contributor.author Uimonen, Semen
dc.contributor.author Millar, R. John
dc.date.accessioned 2020-02-12T10:48:23Z
dc.date.available 2020-02-12T10:48:23Z
dc.date.issued 2019
dc.identifier.citation Eseye , A T , Lehtonen , M , Tukia , T , Uimonen , S & Millar , R J 2019 , Day-ahead Prediction of Building District Heat Demand for Smart Energy Management and Automation in Decentralized Energy Systems . in Proceedings of the 17th IEEE International Conference on Industrial Informatics, INDIN 2019 : Industrial Applications of Artificial Intelligence . IEEE International Conference on Industrial Informatics , IEEE , pp. 1694-1699 , IEEE International Conference on Industrial Informatics , Helsinki-Espoo , Finland , 22/07/2019 . https://doi.org/10.1109/INDIN41052.2019.8972297 en
dc.identifier.isbn 978-1-7281-2927-3
dc.identifier.issn 1935-4576
dc.identifier.issn 2378-363X
dc.identifier.other PURE UUID: 60b8d5a8-867c-4cdb-b985-33555d666045
dc.identifier.other PURE ITEMURL: https://research.aalto.fi/en/publications/60b8d5a8-867c-4cdb-b985-33555d666045
dc.identifier.other PURE FILEURL: https://research.aalto.fi/files/39092267/ELEC_Eseye_etal_Day_ahead_Prediction_of_Building_INDIN_2019_authoracceptedmanuscript.pdf
dc.identifier.uri https://aaltodoc.aalto.fi/handle/123456789/43077
dc.description.abstract This paper proposes an Artificial Intelligence (AI) based data-driven approach to forecast heat demand for various customer types in a District Heating System (DHS). The proposed day-ahead forecasting approach is based on a hybrid model consisting of Imperialistic Competitive Algorithm (ICA) and Support Vector Machine (SVM). The model is built using two years (2015 - 2016) of hourly data from various buildings in the Otaniemi area of Espoo, Finland. Day-ahead forecast models are also developed using Persistence and four other AI based techniques. Comparative forecasting performance analysis among these techniques was performed. The proposed ICA-SVM heat demand forecasting model is tested and validated using an out-of-sample one-year (2017) hourly data of the buildings’ district heat consumption. The prediction results are presented for the out-of-sample testing days in a one-hour time interval. The validation results demonstrate that the devised model is able to predict the buildings’ heat demand with an improved accuracy and short computation time. Moreover, the proposed model demonstrates outperformed prediction accuracy improvement, compared to the other five evaluated models. en
dc.format.mimetype application/pdf
dc.language.iso en en
dc.publisher IEEE
dc.relation.ispartof IEEE International Conference on Industrial Informatics en
dc.relation.ispartofseries Proceedings of the 17th IEEE International Conference on Industrial Informatics, INDIN 2019 en
dc.relation.ispartofseries IEEE International Conference on Industrial Informatics en
dc.rights openAccess en
dc.title Day-ahead Prediction of Building District Heat Demand for Smart Energy Management and Automation in Decentralized Energy Systems en
dc.type A4 Artikkeli konferenssijulkaisussa fi
dc.description.version Peer reviewed en
dc.contributor.department Department of Electrical Engineering and Automation
dc.contributor.department Power Systems and High Voltage Engineering
dc.subject.keyword SVM
dc.subject.keyword ICA
dc.subject.keyword District heating
dc.subject.keyword Prediction
dc.subject.keyword Energy efficiency
dc.subject.keyword Energy management
dc.subject.keyword AI
dc.subject.keyword Machine learning
dc.subject.keyword Building
dc.subject.keyword Decentralized energy systems
dc.subject.keyword Smart cities
dc.subject.keyword Smart grid
dc.identifier.urn URN:NBN:fi:aalto-202002122146
dc.identifier.doi 10.1109/INDIN41052.2019.8972297
dc.type.version acceptedVersion


Files in this item

Files Size Format View

There are no open access files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search archive


Advanced Search

article-iconSubmit a publication

Browse

Statistics