dc.contributor |
Aalto-yliopisto |
fi |
dc.contributor |
Aalto University |
en |
dc.contributor.author |
Lehtinen, Jaakko |
|
dc.contributor.author |
Munkberg, Jacob |
|
dc.contributor.author |
Hasselgren, Jon |
|
dc.contributor.author |
Laine, Samuli |
|
dc.contributor.author |
Karras, Tero |
|
dc.contributor.author |
Aittala, Miika |
|
dc.contributor.author |
Aila, Timo |
|
dc.contributor.editor |
Dy, Jennifer |
|
dc.contributor.editor |
Krause, Andreas |
|
dc.date.accessioned |
2020-02-03T09:00:40Z |
|
dc.date.available |
2020-02-03T09:00:40Z |
|
dc.date.issued |
2018-01-01 |
|
dc.identifier.citation |
Lehtinen , J , Munkberg , J , Hasselgren , J , Laine , S , Karras , T , Aittala , M & Aila , T 2018 , Noise2Noise : Learning image restoration without clean data . in J Dy & A Krause (eds) , 35th International Conference on Machine Learning, ICML 2018 . vol. 7 , Proceedings of Machine Learning Research , no. 80 , International Machine Learning Society (IMLS) , pp. 4620-4631 , International Conference on Machine Learning , Stockholm , Sweden , 10/07/2018 . |
en |
dc.identifier.isbn |
9781510867963 |
|
dc.identifier.issn |
1938-7228 |
|
dc.identifier.other |
PURE UUID: 68e78264-82b3-461a-9bb8-f230ddba1175 |
|
dc.identifier.other |
PURE ITEMURL: https://research.aalto.fi/en/publications/68e78264-82b3-461a-9bb8-f230ddba1175 |
|
dc.identifier.other |
PURE LINK: http://www.scopus.com/inward/record.url?scp=85057221611&partnerID=8YFLogxK |
|
dc.identifier.other |
PURE FILEURL: https://research.aalto.fi/files/40605293/lehtinen18a.pdf |
|
dc.identifier.uri |
https://aaltodoc.aalto.fi/handle/123456789/42912 |
|
dc.description.abstract |
We apply basic statistical reasoning to signal reconstruction by machine learning - learning to map corrupted observations to clean signals - with a simple and powerful conclusion: It is possible to learn to restore images by only looking at corrupted examples, at performance at and some-times exceeding training using clean data, without explicit image priors or likelihood models of the corruption. In practice, we show that a single model learns photographic noise removal, denois- ing synthetic Monte Carlo images, and reconstruction of undersampled MRI scans - all corrupted by different processes - based on noisy data only. |
en |
dc.format.extent |
12 |
|
dc.format.extent |
4620-4631 |
|
dc.format.mimetype |
application/pdf |
|
dc.language.iso |
en |
en |
dc.publisher |
PMLR |
|
dc.relation.ispartof |
International Conference on Machine Learning |
en |
dc.relation.ispartofseries |
35th International Conference on Machine Learning, ICML 2018 |
en |
dc.relation.ispartofseries |
Volume 7 |
en |
dc.relation.ispartofseries |
Proceedings of Machine Learning Research |
en |
dc.relation.ispartofseries |
issue 80 |
en |
dc.rights |
openAccess |
en |
dc.title |
Noise2Noise |
en |
dc.type |
A4 Artikkeli konferenssijulkaisussa |
fi |
dc.description.version |
Peer reviewed |
en |
dc.contributor.department |
Professorship Lehtinen Jaakko |
|
dc.contributor.department |
Nvidia |
|
dc.contributor.department |
Massachusetts Institute of Technology |
|
dc.contributor.department |
Department of Computer Science |
en |
dc.identifier.urn |
URN:NBN:fi:aalto-202002031992 |
|
dc.type.version |
publishedVersion |
|