dc.contributor |
Aalto-yliopisto |
fi |
dc.contributor |
Aalto University |
en |
dc.contributor.author |
Solin, Arno |
|
dc.contributor.author |
Kok, Manon |
|
dc.date.accessioned |
2020-01-17T13:32:04Z |
|
dc.date.available |
2020-01-17T13:32:04Z |
|
dc.date.issued |
2019 |
|
dc.identifier.citation |
Solin , A & Kok , M 2019 , Know Your Boundaries : Constraining Gaussian Processes by Variational Harmonic Features . in Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics (AISTATS) . Proceedings of Machine Learning Research , vol. 89 , JMLR W&CP , pp. 2193-2202 , International Conference on Artificial Intelligence and Statistics , Naha , Japan , 16/04/2019 . < http://proceedings.mlr.press/v89/solin19a.html > |
en |
dc.identifier.issn |
2640-3498 |
|
dc.identifier.other |
PURE UUID: cdfa86a8-d403-4f67-bf29-624a6019123a |
|
dc.identifier.other |
PURE ITEMURL: https://research.aalto.fi/en/publications/cdfa86a8-d403-4f67-bf29-624a6019123a |
|
dc.identifier.other |
PURE LINK: http://proceedings.mlr.press/v89/solin19a.html |
|
dc.identifier.other |
PURE FILEURL: https://research.aalto.fi/files/40208954/Solin19a.pdf |
|
dc.identifier.uri |
https://aaltodoc.aalto.fi/handle/123456789/42573 |
|
dc.description.abstract |
Gaussian processes (GPs) provide a powerful framework for extrapolation, interpolation, and noise removal in regression and classification. This paper considers constraining GPs to arbitrarily-shaped domains with boundary conditions. We solve a Fourier-like generalised harmonic feature representation of the GP prior in the domain of interest, which both constrains the GP and attains a low-rank representation that is used for speeding up inference. The method scales as O(nm^2) in prediction and O(m^3) in hyperparameter learning for regression, where n is the number of data points and m the number of features. Furthermore, we make use of the variational approach to allow the method to deal with non-Gaussian likelihoods. The experiments cover both simulated and empirical data in which the boundary conditions allow for inclusion of additional physical information. |
en |
dc.format.extent |
2193-2202 |
|
dc.format.mimetype |
application/pdf |
|
dc.language.iso |
en |
en |
dc.publisher |
PMLR |
|
dc.relation.ispartof |
International Conference on Artificial Intelligence and Statistics |
en |
dc.relation.ispartofseries |
Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics (AISTATS) |
en |
dc.relation.ispartofseries |
Proceedings of Machine Learning Research |
en |
dc.relation.ispartofseries |
Volume 89 |
en |
dc.rights |
openAccess |
en |
dc.title |
Know Your Boundaries |
en |
dc.type |
A4 Artikkeli konferenssijulkaisussa |
fi |
dc.description.version |
Peer reviewed |
en |
dc.contributor.department |
Professorship Solin A. |
|
dc.contributor.department |
Delft University of Technology |
|
dc.contributor.department |
Department of Computer Science |
en |
dc.identifier.urn |
URN:NBN:fi:aalto-202001171688 |
|
dc.type.version |
publishedVersion |
|