Learning Centre

Know Your Boundaries

 |  Login

Show simple item record

dc.contributor Aalto-yliopisto fi
dc.contributor Aalto University en
dc.contributor.author Solin, Arno
dc.contributor.author Kok, Manon
dc.date.accessioned 2020-01-17T13:32:04Z
dc.date.available 2020-01-17T13:32:04Z
dc.date.issued 2019
dc.identifier.citation Solin , A & Kok , M 2019 , Know Your Boundaries : Constraining Gaussian Processes by Variational Harmonic Features . in Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics (AISTATS) . Proceedings of Machine Learning Research , vol. 89 , JMLR W&CP , pp. 2193-2202 , International Conference on Artificial Intelligence and Statistics , Naha , Japan , 16/04/2019 . < http://proceedings.mlr.press/v89/solin19a.html > en
dc.identifier.issn 2640-3498
dc.identifier.other PURE UUID: cdfa86a8-d403-4f67-bf29-624a6019123a
dc.identifier.other PURE ITEMURL: https://research.aalto.fi/en/publications/cdfa86a8-d403-4f67-bf29-624a6019123a
dc.identifier.other PURE LINK: http://proceedings.mlr.press/v89/solin19a.html
dc.identifier.other PURE FILEURL: https://research.aalto.fi/files/40208954/Solin19a.pdf
dc.identifier.uri https://aaltodoc.aalto.fi/handle/123456789/42573
dc.description.abstract Gaussian processes (GPs) provide a powerful framework for extrapolation, interpolation, and noise removal in regression and classification. This paper considers constraining GPs to arbitrarily-shaped domains with boundary conditions. We solve a Fourier-like generalised harmonic feature representation of the GP prior in the domain of interest, which both constrains the GP and attains a low-rank representation that is used for speeding up inference. The method scales as O(nm^2) in prediction and O(m^3) in hyperparameter learning for regression, where n is the number of data points and m the number of features. Furthermore, we make use of the variational approach to allow the method to deal with non-Gaussian likelihoods. The experiments cover both simulated and empirical data in which the boundary conditions allow for inclusion of additional physical information. en
dc.format.extent 2193-2202
dc.format.mimetype application/pdf
dc.language.iso en en
dc.publisher PMLR
dc.relation.ispartof International Conference on Artificial Intelligence and Statistics en
dc.relation.ispartofseries Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics (AISTATS) en
dc.relation.ispartofseries Proceedings of Machine Learning Research en
dc.relation.ispartofseries Volume 89 en
dc.rights openAccess en
dc.title Know Your Boundaries en
dc.type A4 Artikkeli konferenssijulkaisussa fi
dc.description.version Peer reviewed en
dc.contributor.department Professorship Solin A.
dc.contributor.department Delft University of Technology
dc.contributor.department Department of Computer Science en
dc.identifier.urn URN:NBN:fi:aalto-202001171688
dc.type.version publishedVersion


Files in this item

Files Size Format View

There are no open access files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search archive


Advanced Search

article-iconSubmit a publication

Browse

Statistics