Learning Centre

Decision-making of online rescheduling procedures using neuroevolution of augmenting topologies

 |  Login

Show simple item record

dc.contributor Aalto-yliopisto fi
dc.contributor Aalto University en
dc.contributor.author Ikonen, Teemu
dc.contributor.author Harjunkoski, Iiro
dc.contributor.editor Kiss, Anton
dc.contributor.editor Zondervan, Edwin
dc.contributor.editor Lakerveld, Richard
dc.contributor.editor Özkan, Leyla
dc.date.accessioned 2020-01-02T13:54:05Z
dc.date.available 2020-01-02T13:54:05Z
dc.date.issued 2019
dc.identifier.citation Ikonen , T & Harjunkoski , I 2019 , Decision-making of online rescheduling procedures using neuroevolution of augmenting topologies . in A Kiss , E Zondervan , R Lakerveld & L Özkan (eds) , Proceedings of the 29th European Symposium on Computer Aided Chemical Engineering . vol. 46 , Computer-aided chemical engineering , vol. 46 , Elsevier , pp. 1177-1182 , European Symposium on Computer-Aided Process Engineering , Eindhoven , Netherlands , 16/06/2019 . https://doi.org/10.1016/B978-0-12-818634-3.50197-1 en
dc.identifier.isbn 9780128186343
dc.identifier.other PURE UUID: 1fac9cbb-de70-4d3b-aaee-1140d8a0aa91
dc.identifier.other PURE ITEMURL: https://research.aalto.fi/en/publications/1fac9cbb-de70-4d3b-aaee-1140d8a0aa91
dc.identifier.other PURE FILEURL: https://research.aalto.fi/files/32579190/ESCAPE19_ikonen_harjunkoski_final.pdf
dc.identifier.uri https://aaltodoc.aalto.fi/handle/123456789/41942
dc.description HUOM! TÄMÄn MANUSKAn EMBARGO ON YLIPITKÄ KUNNES ARTIKKELI ON JULKAISTU JA JULKAISUVIIVE MÄÄRITELTY KUSTANTAJAN JULKAISUPÄIVÄSTÄ ALKAEN. The manuscript's embargo is very long until the article has been published and the embargo date can be defined. HUOM 2: Varmista, että julkaisun nimi pysyy samana: 29th European Symposium on Computer Aided Chemical [EI PROCESS KUTEN NYT JULKAISUN KUVAUKSESSA] Engineering
dc.description.abstract Online scheduling requires appropriate timing of rescheduling procedures, as well as the determination of relevant horizon length. Optimal choices of these quantities are highly dependent on the uncertainty of the scheduling environment and may vary over time. We propose an approach where a neural network is trained to make online decisions on these quantities, as well as on the choice of the rescheduling method (mathematical programming or metaheuristics). In our approach, the neural network is trained using neuroevolution of augmenting topologies (NEAT) in a simulated environment. In this paper, we also optimize the rescheduling interval and horizon length of a conventional periodically occurring rescheduling on a dynamic routing problem. The resulting approach is the baseline for the development of the proposed neural network approach. en
dc.format.mimetype application/pdf
dc.language.iso en en
dc.relation.ispartof European Symposium on Computer-Aided Process Engineering en
dc.relation.ispartofseries Proceedings of the 29th European Symposium on Computer Aided Chemical Engineering en
dc.relation.ispartofseries Volume 46 en
dc.rights openAccess en
dc.title Decision-making of online rescheduling procedures using neuroevolution of augmenting topologies en
dc.type A4 Artikkeli konferenssijulkaisussa fi
dc.description.version Peer reviewed en
dc.contributor.department Process Control and Automation
dc.contributor.department Department of Chemical and Metallurgical Engineering en
dc.subject.keyword online scheduling
dc.subject.keyword horizon length
dc.subject.keyword scheduling interval
dc.subject.keyword neural network
dc.subject.keyword NEAT
dc.identifier.urn URN:NBN:fi:aalto-202001021053
dc.identifier.doi 10.1016/B978-0-12-818634-3.50197-1
dc.date.embargo info:eu-repo/date/embargoEnd/2020-08-31


Files in this item

Files Size Format View

There are no open access files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search archive


Advanced Search

article-iconSubmit a publication

Browse

Statistics