Abstract:
In the IoT era, a massive number of smart sensors produce a variety of data at unprecedented scale. Edge storage has limited capacities posing a crucial challenge for maintaining only the most relevant IoT data for edge analytics. Currently, this problem is addressed mostly considering traditional cloud-based database perspectives, including storage optimization and resource elasticity, while separately investigating data analytics approaches and system operations. For better support of future edge analytics, in this work, we propose a novel, holistic approach for architecturing elastic edge storage services, featuring three aspects, namely, (i) data/system characterization (e.g., metrics, key properties), (ii) system operations (e.g., filtering, sampling), and (iii) data processing utilities (e.g., recovery, prediction). In this regard, we present seven engineering principles for the architecture design of edge data services.