Nimeke: | Advances in Randomly-Weighted Neural Networks and Temporal Gaussian Processes |
Tekijä(t): | Grigorievskiy, Alexander |
Päiväys: | 2019 |
Kieli: | en |
Sivut: | 127 + app. 83 |
Laitos: | Tietotekniikan laitos Department of Computer Science |
ISBN: | 978-952-60-8671-2 (electronic) 978-952-60-8670-5 (printed) |
Sarjan nimi: | Aalto University publication series DOCTORAL DISSERTATIONS, 144/2019 |
ISSN: | 1799-4942 (electronic) 1799-4934 (printed) 1799-4934 (ISSN-L) |
Vastuuprofessori(t): | Vehtari, Aki, Prof., Aalto University, Department of Computer Science, Finland |
Ohjaaja(t): | Karhunen, Juha, Prof. Emeritus, Department of Computer Science, Aalto University, Finland |
Aihe: | Computer science |
Avainsanat: | randomly-weighted neural networks, extreme learning machines, Gaussian processes, time series prediction, state-space models |
Arkisto | yes |
|
|
Tiivistelmä:This dissertation consists of three main parts. In the first part, the existing methods of machine learning are applied to the environmental and astronomical datasets. The problems addressed in this part are the prediction of phosphorus concentration in the Pyhäjärvi lake (Finland) and the analysis of the correlation of geomagnetic storms with solar activity. For the first problem, several different models are built and the final accuracy is improved by variable selection and making an optimal ensemble. The second problem is solved by considering a correlation coefficient and estimating its uncertainty by the bootstrap method.
|
|
Osajulkaisut:[Publication 1]: Alexander Grigorevskiy, Anton Akusok, Marjo Tarvainen, Anne-Mari Ventelä, Amaury Lendasse. Practical Estimation of Missing Phosphorus Values in Pyhäjärvi Lake Data. In Workshop on New Challenges in NeuralComputation, 2013, Saarbrücken (Germany), Machine Learning Reports, Volume 2, pages 8-16, September 2013.[Publication 2]: E.K.J. Kilpua, N. Olspert, A. Grigorievskiy, M.J. Käpylä, E.I. Tanskanen, H. Miyahara, R. Kataoka, J. Pelt, Y.D. Liu. Statistical Study of Strong and Extreme Geomagnetic Disturbances and Solar Cycle Characteristics. The Astrophysical Journal, 2015, Volume 806, Number 2, pages 272.[Publication 3]: Alexander Grigorievskiy, Yoan Miche, Anne-Mari Ventelä, Eric Sèverin, Amaury Lendasse. Long-term time series prediction using OP-ELM. Neural Networks, 2014, Volume 51, pages 50-56. DOI: 10.1016/j.neunet.2013.12.002 View at Publisher [Publication 4]: Alexander Grigorievskiy, Yoan Miche, Maarit Mantere, Amaury Lendasse. Singular Value Decomposition Update and Its Application to (Inc)-OPELM. Neurocomputing, 2016, Volume 174, Part A, pages 99-108, DOI: 10.1016/j.neucom.2015.03.107 View at Publisher [Publication 5]: Alexander Grigorievskiy, Maarit Mantere, Anton Akusok, Emil Eirola, Amaury Lendasse. Forecasting the Outbursts of the Photometry Light Curve of Star V363 Lyr. In International work-conference on Time Series(ITISE-2014), Granada (Spain), Proceedings of ITISE-2014, Volume 2, pages 520-531, June 2014.[Publication 6]: Alexander Grigorievskiy, Juha Karhunen. Gaussian Process Kernels for Popular State-Space Time Series Models. In International Joint Conference on Neural Networks (IJCNN 2016), Vancouver (Canada), pages 3354-3363, July 2016. Full text in Acris/Aaltodoc. http://urn.fi/URN:NBN:fi:aalto-201612165936. DOI: 10.1109/IJCNN.2016.7727628 View at Publisher [Publication 7]: Alexander Grigorievskiy, Neil Lawrence, Simo Särkkä. Parallelizable Sparse Inverse Formulation Gaussian Processes (SpInGP). In Proceedings of the Workshop on Machine Learning for Signal Processing MLSP2017), Tokyo (Japan), September 2017.[Errata file]: Errata of P6 |
|
|
Ellei toisin mainita, kaikki tekijänoikeuslain mukaiset oikeudet kuuluvat julkaisun tekijälle. Teosta voi lukea ja tulostaa henkilökohtaista käyttöä varten. Käyttö kaupallisiin tarkoituksiin on kielletty.
Sivusta vastaa: Aalto-yliopiston oppimiskeskus | Palvelun rekisteriseloste | Tietoa sivustosta