dc.contributor |
Aalto-yliopisto |
fi |
dc.contributor |
Aalto University |
en |
dc.contributor.author |
Björklund, Andreas |
|
dc.contributor.author |
Kaski, Petteri |
|
dc.contributor.author |
Williams, Ryan |
|
dc.contributor.editor |
Chatzigiannakis, Ioannis |
|
dc.contributor.editor |
Baier, Christel |
|
dc.contributor.editor |
Leonardi, Stefano |
|
dc.contributor.editor |
Flocchini, Paola |
|
dc.date.accessioned |
2019-08-15T08:27:40Z |
|
dc.date.available |
2019-08-15T08:27:40Z |
|
dc.date.issued |
2019-07-01 |
|
dc.identifier.citation |
Björklund , A , Kaski , P & Williams , R 2019 , Solving systems of polynomial equations over GF(2) by a parity-counting self-reduction . in I Chatzigiannakis , C Baier , S Leonardi & P Flocchini (eds) , 46th International Colloquium on Automata, Languages, and Programming, ICALP 2019 . , 26 , Leibniz international proceedings in informatics , vol. 132 , Schloss Dagstuhl-Leibniz-Zentrum für Informatik , pp. 1-13 , International Colloquium on Automata, Languages and Programming , Patras , Greece , 08/07/2019 . https://doi.org/10.4230/LIPIcs.ICALP.2019.26 |
en |
dc.identifier.isbn |
9783959771092 |
|
dc.identifier.issn |
1868-8969 |
|
dc.identifier.other |
PURE UUID: d50f6c09-f0bf-46aa-81be-91e6587ce444 |
|
dc.identifier.other |
PURE ITEMURL: https://research.aalto.fi/en/publications/d50f6c09-f0bf-46aa-81be-91e6587ce444 |
|
dc.identifier.other |
PURE LINK: http://www.scopus.com/inward/record.url?scp=85069220126&partnerID=8YFLogxK |
|
dc.identifier.other |
PURE FILEURL: https://research.aalto.fi/files/35681013/LIPIcs_ICALP_2019_26.pdf |
|
dc.identifier.uri |
https://aaltodoc.aalto.fi/handle/123456789/39757 |
|
dc.description.abstract |
We consider the problem of finding solutions to systems of polynomial equations over a finite field. Lokshtanov et al. [SODA'17] recently obtained the first worst-case algorithms that beat exhaustive search for this problem. In particular for degree-d equations modulo two in n variables, they gave an O∗2(1−1/(5d))n time algorithm, and for the special case d = 2 they gave an O∗20.876n time algorithm. We modify their approach in a way that improves these running times to O∗2(1−1/(27d))n and O∗20.804n, respectively. In particular, our latter bound - that holds for all systems of quadratic equations modulo 2 - comes close to the O∗20.792n expected time bound of an algorithm empirically found to hold for random equation systems in Bardet et al. [J. Complexity, 2013]. Our improvement involves three observations: 1. The Valiant-Vazirani lemma can be used to reduce the solution-finding problem to that of counting solutions modulo 2. 2. The monomials in the probabilistic polynomials used in this solution-counting modulo 2 have a special form that we exploit to obtain better bounds on their number than in Lokshtanov et al. [SODA'17]. 3. The problem of solution-counting modulo 2 can be “embedded” in a smaller instance of the original problem, which enables us to apply the algorithm as a subroutine to itself. |
en |
dc.format.extent |
1-13 |
|
dc.format.mimetype |
application/pdf |
|
dc.language.iso |
en |
en |
dc.publisher |
Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing |
|
dc.relation.ispartof |
International Colloquium on Automata, Languages, and Programming |
en |
dc.relation.ispartofseries |
46th International Colloquium on Automata, Languages, and Programming, ICALP 2019 |
en |
dc.relation.ispartofseries |
Leibniz international proceedings in informatics |
en |
dc.relation.ispartofseries |
Volume 132 |
en |
dc.rights |
openAccess |
en |
dc.title |
Solving systems of polynomial equations over GF(2) by a parity-counting self-reduction |
en |
dc.type |
A4 Artikkeli konferenssijulkaisussa |
fi |
dc.description.version |
Peer reviewed |
en |
dc.contributor.department |
Lund University |
|
dc.contributor.department |
Helsinki Institute for Information Technology (HIIT) |
|
dc.contributor.department |
Massachusetts Institute of Technology |
|
dc.contributor.department |
Department of Computer Science |
en |
dc.subject.keyword |
Equation systems |
|
dc.subject.keyword |
Polynomial method |
|
dc.identifier.urn |
URN:NBN:fi:aalto-201908154802 |
|
dc.identifier.doi |
10.4230/LIPIcs.ICALP.2019.26 |
|
dc.type.version |
publishedVersion |
|