dc.contributor |
Aalto-yliopisto |
fi |
dc.contributor |
Aalto University |
en |
dc.contributor.author |
Kortoçi, Pranvera |
|
dc.contributor.author |
Zheng, Liang |
|
dc.contributor.author |
Joe-Wong, Carlee |
|
dc.contributor.author |
Di Francesco, Mario |
|
dc.contributor.author |
Chiang, Mung |
|
dc.date.accessioned |
2019-07-30T07:18:29Z |
|
dc.date.available |
2019-07-30T07:18:29Z |
|
dc.date.issued |
2019-04-01 |
|
dc.identifier.citation |
Kortoçi , P , Zheng , L , Joe-Wong , C , Di Francesco , M & Chiang , M 2019 , Fog-based Data Offloading in Urban IoT Scenarios . in INFOCOM 2019 - IEEE Conference on Computer Communications . , 8737503 , Proceedings - IEEE INFOCOM , vol. 2019-April , IEEE , pp. 784-792 , IEEE Conference on Computer Communications , Paris , France , 29/04/2019 . https://doi.org/10.1109/INFOCOM.2019.8737503 |
en |
dc.identifier.isbn |
9781728105154 |
|
dc.identifier.issn |
0743-166X |
|
dc.identifier.other |
PURE UUID: 996c4d7b-3370-464b-9f03-1cc3bd730f92 |
|
dc.identifier.other |
PURE ITEMURL: https://research.aalto.fi/en/publications/996c4d7b-3370-464b-9f03-1cc3bd730f92 |
|
dc.identifier.other |
PURE LINK: http://www.scopus.com/inward/record.url?scp=85068219779&partnerID=8YFLogxK |
|
dc.identifier.other |
PURE FILEURL: https://research.aalto.fi/files/35329446/SCI_Kortoci_Di_Francesco_Fog_Based_Data_infocom_2019_kortoci_camera_ready.pdf |
|
dc.identifier.uri |
https://aaltodoc.aalto.fi/handle/123456789/39468 |
|
dc.description.abstract |
Urban environments are a particularly important application scenario for the Internet of Things (IoT). These environments are usually dense and dynamic; in contrast, IoT devices are resource-constrained, thus making reliable data collection and scalable coordination a challenge. This work leverages the fog networking paradigm to devise a multi-tier data offloading protocol suitable for diverse data-centric applications in urban IoT scenarios. Specifically, it takes advantage of heterogeneity in the network so that sensors can collaboratively offload data to each other or to mobile gateways. Second, it evaluates the performance of this offloading process through the amount of data successfully reported to the cloud. In detail, it provides an analytical characterization of data drop-off rates as a random process and derives a light-weight yet efficient method for collaborative data offloading. Finally, it shows that the proposed fog-based solution significantly decreases the data drop-off rate through both analysis and extensive trace-driven simulations based on human mobility data from real urban settings. |
en |
dc.format.extent |
9 |
|
dc.format.extent |
784-792 |
|
dc.format.mimetype |
application/pdf |
|
dc.language.iso |
en |
en |
dc.relation.ispartof |
IEEE Conference on Computer Communications |
en |
dc.relation.ispartofseries |
INFOCOM 2019 - IEEE Conference on Computer Communications |
en |
dc.relation.ispartofseries |
Proceedings - IEEE INFOCOM |
en |
dc.relation.ispartofseries |
Volume 2019-April |
en |
dc.rights |
openAccess |
en |
dc.title |
Fog-based Data Offloading in Urban IoT Scenarios |
en |
dc.type |
A4 Artikkeli konferenssijulkaisussa |
fi |
dc.description.version |
Peer reviewed |
en |
dc.contributor.department |
Professorship Di Francesco Mario |
|
dc.contributor.department |
Princeton University |
|
dc.contributor.department |
Carnegie Mellon University |
|
dc.contributor.department |
Purdue University |
|
dc.contributor.department |
Department of Computer Science |
en |
dc.subject.keyword |
collaborative offloading |
|
dc.subject.keyword |
data drop-off rate |
|
dc.subject.keyword |
Fog networking |
|
dc.subject.keyword |
Internet of Things |
|
dc.identifier.urn |
URN:NBN:fi:aalto-201907304523 |
|
dc.identifier.doi |
10.1109/INFOCOM.2019.8737503 |
|
dc.type.version |
acceptedVersion |
|