Learning Centre

Analysis of Network Lasso for Semi-Supervised Regression

 |  Login

Show simple item record

dc.contributor Aalto-yliopisto fi
dc.contributor Aalto University en
dc.contributor.author Jung, Alex
dc.contributor.author Vesselinova, Natalia
dc.date.accessioned 2019-07-30T07:17:00Z
dc.date.available 2019-07-30T07:17:00Z
dc.date.issued 2019
dc.identifier.citation Jung , A & Vesselinova , N 2019 , Analysis of Network Lasso for Semi-Supervised Regression . in Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics (AISTATS) 2019, Naha, Okinawa, Japan . Proceedings of Machine Learning Research , vol. 89 , PMLR , pp. 380-387 , International Conference on Artificial Intelligence and Statistics , Naha , Japan , 16/04/2019 . < http://proceedings.mlr.press/v89/jung19a.html > en
dc.identifier.issn 1938-7228
dc.identifier.other PURE UUID: 641ee587-798a-40c6-a557-cbf1bdacff83
dc.identifier.other PURE ITEMURL: https://research.aalto.fi/en/publications/641ee587-798a-40c6-a557-cbf1bdacff83
dc.identifier.other PURE LINK: http://proceedings.mlr.press/v89/jung19a.html
dc.identifier.other PURE FILEURL: https://research.aalto.fi/files/35129871/jung19a.pdf
dc.identifier.uri https://aaltodoc.aalto.fi/handle/123456789/39439
dc.description.abstract We apply network Lasso to semi-supervised regression problems involving network-structured data. This approach lends quite naturally to highly scalable learning algorithms in the form of message passing over an empirical graph which represents the network structure of the data. By using a simple non-parametric regression model, which is motivated by a clustering hypothesis, we provide an analysis of the estimation error incurred by network Lasso. This analysis reveals conditions on the network structure and the available training data which guarantee network Lasso to be accurate. Remarkably, the accuracy of network Lasso is related to the existence of suciently large network flows over the empirical graph. Thus, our analysis reveals a connection between network Lasso and maximum network flow problems. en
dc.format.extent 380-387
dc.format.mimetype application/pdf
dc.language.iso en en
dc.publisher PMLR
dc.relation.ispartof International Conference on Artificial Intelligence and Statistics en
dc.relation.ispartofseries Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics (AISTATS) 2019, Naha, Okinawa, Japan en
dc.relation.ispartofseries Proceedings of Machine Learning Research en
dc.relation.ispartofseries Volume 89 en
dc.rights openAccess en
dc.title Analysis of Network Lasso for Semi-Supervised Regression en
dc.type A4 Artikkeli konferenssijulkaisussa fi
dc.description.version Peer reviewed en
dc.contributor.department Helsinki Institute for Information Technology (HIIT)
dc.contributor.department Professorship Jung Alexander
dc.contributor.department Department of Computer Science en
dc.identifier.urn URN:NBN:fi:aalto-201907304494
dc.type.version publishedVersion


Files in this item

Files Size Format View

There are no open access files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search archive


Advanced Search

article-iconSubmit a publication

Browse

Statistics