Electroluminescent cooling in intracavity light emitters: modeling and experiments

Loading...
Thumbnail Image
Journal Title
Journal ISSN
Volume Title
School of Science | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
Date
2017
Major/Subject
Mcode
Degree programme
Language
en
Pages
8
Series
Volume 50, Issue 1, Optical and Quantum Electronics
Abstract
We develop a coupled electronic charge and photon transport simulation model to allow for deeper analysis of our recent experimental studies of intracavity double diode structures (DDSs). The studied structures consist of optically coupled AlGaAs/GaAs double heterojunction light emitting diode (LED) and GaAs p–n-homojunction photodiode (PD) structure, integrated as a single semiconductor device. The drift–diffusion formalism for charge transport and an optical model, coupling the LED and the PD, are self-consistently applied to complement our experimental work on the evaluation of the efficiency of these DDSs. This is to understand better their suitability for electroluminescent cooling (ELC) demonstration, and shed further light on electroluminescence and optical energy transfer in the structures. The presented results emphasize the adverse effect of non-radiative recombination on device efficiency, which is the main obstacle for achieving ELC in III-V semiconductors.
Description
Keywords
Electroluminescent cooling, Intracavity light emitters, III-As, Light-emitting diodes Photodiodes
Other note
Citation
Sadi, Toufik & Kivisaari, Pyry & Tiira, Jonna & Radevici, Ivan & Haggren, Tuomas & Oksanen, Jani. 2017. Electroluminescent cooling in intracavity light emitters: modeling and experiments. Volume 50, Issue 1. Optical and Quantum Electronics. 8. 0306-8919 (printed). DOI: 10.1007/s11082-017-1285-z.