Learning Centre

A stochastic mixed-integer convex programming model for long-term distribution system expansion planning considering greenhouse gas emission mitigation

 |  Login

Show simple item record

dc.contributor Aalto-yliopisto fi
dc.contributor Aalto University en
dc.contributor.author Home-Ortiz, Juan M.
dc.contributor.author Melgar-Dominguez, Ozy D.
dc.contributor.author Pourakbari-Kasmaei, Mahdi
dc.contributor.author Mantovani, José Roberto Sanches
dc.date.accessioned 2019-02-25T08:52:07Z
dc.date.available 2019-02-25T08:52:07Z
dc.date.issued 2019-06-01
dc.identifier.citation Home-Ortiz , J M , Melgar-Dominguez , O D , Pourakbari-Kasmaei , M & Mantovani , J R S 2019 , ' A stochastic mixed-integer convex programming model for long-term distribution system expansion planning considering greenhouse gas emission mitigation ' , International Journal of Electrical Power and Energy Systems , vol. 108 , pp. 86-95 . https://doi.org/10.1016/j.ijepes.2018.12.042 en
dc.identifier.issn 0142-0615
dc.identifier.issn 1879-3517
dc.identifier.other PURE UUID: b5fb1ce4-2acb-4169-8b2a-927e1a5d2955
dc.identifier.other PURE ITEMURL: https://research.aalto.fi/en/publications/b5fb1ce4-2acb-4169-8b2a-927e1a5d2955
dc.identifier.other PURE LINK: http://www.scopus.com/inward/record.url?scp=85059578096&partnerID=8YFLogxK
dc.identifier.other PURE FILEURL: https://research.aalto.fi/files/31653825/ELEC_Mahdi_stochastic_mixed_integer_convex_programming_model.pdf
dc.identifier.uri https://aaltodoc.aalto.fi/handle/123456789/36867
dc.description.abstract This paper proposes a multistage convex distribution system planning model to find the best reinforcement plan over a specified horizon. This strategy determines planning actions such as reinforcement of existing substations, conductor replacement of overloaded feeders, and siting and sizing of renewable and dispatchable distributed generation units. Besides, the proposed approach aims at mitigating the greenhouse gas emissions of electric power distribution systems via a monetary form. Inherently, this problem is a non-convex optimization model that can be an obstacle to finding the optimal global solution. To remedy this issue, convex envelopes are used to recast the original problem into a mixed integer conic programming (MICP) model. The MICP model guarantees convergence to optimal global solution by using existing commercial solvers. Moreover, to address the prediction errors in wind output power and electricity demands, a two-stage stochastic MICP model is developed. To validate the proposed model, detail analysis is carried out over various case studies of a 34-node distribution system under different conditions, while to show its potential and effectiveness a 135-node system with two substations is used. Numerical results confirm the effectiveness of the proposed planning scheme in obtaining an economic investment plan at the presence of several planning alternatives and to promote an environmentally committed electric power distribution network. en
dc.format.extent 10
dc.format.extent 86-95
dc.format.mimetype application/pdf
dc.language.iso en en
dc.publisher Elsevier Limited
dc.relation.ispartofseries International Journal of Electrical Power and Energy Systems en
dc.relation.ispartofseries Volume 108 en
dc.rights openAccess en
dc.title A stochastic mixed-integer convex programming model for long-term distribution system expansion planning considering greenhouse gas emission mitigation en
dc.type A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä fi
dc.description.version Peer reviewed en
dc.contributor.department São Paulo State University
dc.contributor.department Department of Electrical Engineering and Automation
dc.subject.keyword Conic programming
dc.subject.keyword Distributed energy
dc.subject.keyword Multistage distribution system expansion planning
dc.subject.keyword Renewable energy sources
dc.subject.keyword Stochastic programming
dc.identifier.urn URN:NBN:fi:aalto-201902252024
dc.identifier.doi 10.1016/j.ijepes.2018.12.042
dc.date.embargo info:eu-repo/date/embargoEnd/2021-01-08


Files in this item

Files Size Format View

There are no open access files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search archive


Advanced Search

article-iconSubmit a publication

Browse

Statistics