Learning Centre

Iterative statistical linear regression for Gaussian smoothing in continuous-time non-linear stochastic dynamic systems

 |  Login

Show simple item record

dc.contributor Aalto-yliopisto fi
dc.contributor Aalto University en
dc.contributor.author Tronarp, Filip
dc.contributor.author Särkkä, Simo
dc.date.accessioned 2019-02-25T08:42:07Z
dc.date.available 2019-02-25T08:42:07Z
dc.date.issued 2019-06-01
dc.identifier.citation Tronarp , F & Särkkä , S 2019 , ' Iterative statistical linear regression for Gaussian smoothing in continuous-time non-linear stochastic dynamic systems ' , Signal Processing , vol. 159 , pp. 1-12 . https://doi.org/10.1016/j.sigpro.2019.01.013 en
dc.identifier.issn 0165-1684
dc.identifier.other PURE UUID: 2196594d-7d5d-4923-96b3-ba178828e2c9
dc.identifier.other PURE ITEMURL: https://research.aalto.fi/en/publications/2196594d-7d5d-4923-96b3-ba178828e2c9
dc.identifier.other PURE LINK: http://www.scopus.com/inward/record.url?scp=85060713861&partnerID=8YFLogxK
dc.identifier.other PURE FILEURL: https://research.aalto.fi/files/32125873/ELEC_Tronarp_etal_Iterative_Statistical_Linear_SigPro_159_2019.pdf
dc.identifier.uri https://aaltodoc.aalto.fi/handle/123456789/36671
dc.description.abstract This paper considers approximate smoothing for discretely observed non-linear stochastic differential equations. The problem is tackled by developing methods for linearising stochastic differential equations with respect to an arbitrary Gaussian process. Two methods are developed based on (1) taking the limit of statistical linear regression of the discretised process and (2) minimising an upper bound to a cost functional. Their difference is manifested in the diffusion of the approximate processes. This in turn gives novel derivations of pre-existing Gaussian smoothers when Method 1 is used and a new class of Gaussian smoothers when Method 2 is used. Furthermore, based on the aforementioned development the iterative Gaussian smoothers in discrete-time are generalised to the continuous-time setting by iteratively re-linearising the stochastic differential equation with respect to the current Gaussian process approximation to the smoothed process. The method is verified in two challenging tracking problems, a reentry problem and a radar tracked coordinated turn model with state dependent diffusion. The results show that the method has competitive estimation accuracy with state-of-the-art smoothers. en
dc.format.extent 12
dc.format.mimetype application/pdf
dc.language.iso en en
dc.publisher Elsevier
dc.relation.ispartofseries Signal Processing en
dc.relation.ispartofseries Volume 159 en
dc.rights openAccess en
dc.title Iterative statistical linear regression for Gaussian smoothing in continuous-time non-linear stochastic dynamic systems en
dc.type A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä fi
dc.description.version Peer reviewed en
dc.contributor.department Department of Electrical Engineering and Automation
dc.subject.keyword Continuous-discrete Gaussian smoothing
dc.subject.keyword Iterative methods
dc.subject.keyword Statistical linear regression
dc.subject.keyword Stochastic differential equations
dc.identifier.urn URN:NBN:fi:aalto-201902251828
dc.identifier.doi 10.1016/j.sigpro.2019.01.013
dc.date.embargo info:eu-repo/date/embargoEnd/2021-01-30


Files in this item

Files Size Format View

There are no open access files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search archive


Advanced Search

article-iconSubmit a publication

Browse

Statistics