dc.contributor |
Aalto-yliopisto |
fi |
dc.contributor |
Aalto University |
en |
dc.contributor.author |
Solin, Arno |
|
dc.contributor.author |
Hensman, James |
|
dc.contributor.author |
Turner, Richard E. |
|
dc.date.accessioned |
2019-01-14T09:24:22Z |
|
dc.date.available |
2019-01-14T09:24:22Z |
|
dc.date.issued |
2018 |
|
dc.identifier.citation |
Solin , A , Hensman , J & Turner , R E 2018 , Infinite-Horizon Gaussian Processes . in 32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada. . Advances in Neural Information Processing Systems , vol. 31 , Curran Associates, Inc. , pp. 3490-3499 , Conference on Neural Information Processing Systems , Montréal , Canada , 02/12/2018 . < http://papers.nips.cc/paper/7608-infinite-horizon-gaussian-processes.pdf > |
en |
dc.identifier.issn |
1049-5258 |
|
dc.identifier.other |
PURE UUID: cc4edcc6-ad67-493f-b735-d0fa1cb4d3ed |
|
dc.identifier.other |
PURE ITEMURL: https://research.aalto.fi/en/publications/cc4edcc6-ad67-493f-b735-d0fa1cb4d3ed |
|
dc.identifier.other |
PURE LINK: http://papers.nips.cc/paper/7608-infinite-horizon-gaussian-processes.pdf |
|
dc.identifier.other |
PURE LINK: https://papers.nips.cc/paper/7608-infinite-horizon-gaussian-processes |
|
dc.identifier.other |
PURE FILEURL: https://research.aalto.fi/files/30995961/SCI_Solin_Infinite_Horizon_Gaussian_Processes.article.pdf |
|
dc.identifier.uri |
https://aaltodoc.aalto.fi/handle/123456789/36021 |
|
dc.description.abstract |
Gaussian processes provide a flexible framework for forecasting, removing noise, and interpreting long temporal datasets. State space modelling (Kalman filtering) enables these non-parametric models to be deployed on long datasets by reducing the complexity to linear in the number of data points. The complexity is still cubic in the state dimension m which is an impediment to practical application. In certain special cases (Gaussian likelihood, regular spacing) the GP posterior will reach a steady posterior state when the data are very long. We leverage this and formulate an inference scheme for GPs with general likelihoods, where inference is based on single-sweep EP (assumed density filtering). The infinite-horizon model tackles the cubic cost in the state dimensionality and reduces the cost in the state dimension m to O(m^2) per data point. The model is extended to online-learning of hyperparameters. We show examples for large finite-length modelling problems, and present how the method runs in real-time on a smartphone on a continuous data stream updated at 100 Hz. |
en |
dc.format.extent |
10 |
|
dc.format.extent |
3490-3499 |
|
dc.format.mimetype |
application/pdf |
|
dc.language.iso |
en |
en |
dc.publisher |
IEEE |
|
dc.relation.ispartof |
Conference on Neural Information Processing Systems |
en |
dc.relation.ispartofseries |
32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada. |
en |
dc.relation.ispartofseries |
Advances in Neural Information Processing Systems |
en |
dc.relation.ispartofseries |
Volume 31 |
en |
dc.rights |
openAccess |
en |
dc.title |
Infinite-Horizon Gaussian Processes |
en |
dc.type |
A4 Artikkeli konferenssijulkaisussa |
fi |
dc.description.version |
Peer reviewed |
en |
dc.contributor.department |
Professorship Solin A. |
|
dc.contributor.department |
PROWLER.io Limited |
|
dc.contributor.department |
University of Cambridge |
|
dc.contributor.department |
Department of Computer Science |
en |
dc.identifier.urn |
URN:NBN:fi:aalto-201901141204 |
|
dc.type.version |
acceptedVersion |
|