Fundamentals of force-controlled friction riveting

 |  Login

Show simple item record

dc.contributor Aalto-yliopisto fi
dc.contributor Aalto University en Cipriano, Gonçalo Pina Blaga, Lucian A. dos Santos, Jorge F. Vilaça, Pedro Amancio-Filho, Sergio T. 2019-01-14T09:20:41Z 2019-01-14T09:20:41Z 2018-12-07
dc.identifier.citation Cipriano , G P , Blaga , L A , dos Santos , J F , Vilaça , P & Amancio-Filho , S T 2018 , ' Fundamentals of force-controlled friction riveting : Part II-Joint global mechanical performance and energy efficiency ' Materials , vol. 11 , no. 12 , 2489 . DOI: 10.3390/ma11122489 en
dc.identifier.issn 1996-1944
dc.identifier.other PURE UUID: 43723f3e-428f-4c68-9887-283d5162bf2a
dc.identifier.other PURE ITEMURL:
dc.identifier.other PURE LINK:
dc.identifier.other PURE FILEURL:
dc.description.abstract The present work investigates the correlation between energy efficiency and global mechanical performance of hybrid aluminum alloy AA2024 (polyetherimide joints), produced by force-controlled friction riveting. The combinations of parameters followed a central composite design of experiments. Joint formation was correlated with mechanical performance via a volumetric ratio (0.28-0.66 a.u.), with a proposed improvement yielding higher accuracy. Global mechanical performance and ultimate tensile force varied considerably across the range of parameters (1096-9668 N). An energy efficiency threshold was established at 90 J, until which, energy input displayed good linear correlations with volumetric ratio and mechanical performance (R-sq of 0.87 and 0.86, respectively). Additional energy did not significantly contribute toward increasing mechanical performance. Friction parameters (i.e., force and time) displayed the most significant contributions to mechanical performance (32.0% and 21.4%, respectively), given their effects on heat development. For the investigated ranges, forging parameters did not have a significant contribution. A correlation between friction parameters was established to maximize mechanical response while minimizing energy usage. The knowledge from Parts I and II of this investigation allows the production of friction riveted connections in an energy efficient manner and control optimization approach, introduced for the first time in friction riveting. en
dc.format.mimetype application/pdf
dc.language.iso en en
dc.relation.ispartofseries Materials en
dc.relation.ispartofseries Volume 11, issue 12 en
dc.rights openAccess en
dc.subject.other Materials Science(all) en
dc.subject.other 216 Materials engineering en
dc.title Fundamentals of force-controlled friction riveting en
dc.type A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä fi
dc.description.version Peer reviewed en
dc.contributor.department Department of Mechanical Engineering
dc.contributor.department Helmholtz-Zentrum Geesthacht - Centre for Materials and Coastal Research
dc.contributor.department Graz University of Technology
dc.subject.keyword Friction
dc.subject.keyword Hybrid structures
dc.subject.keyword Joining
dc.subject.keyword Response surface
dc.subject.keyword Riveting
dc.subject.keyword Materials Science(all)
dc.subject.keyword 216 Materials engineering
dc.identifier.urn URN:NBN:fi:aalto-201901141127
dc.identifier.doi 10.3390/ma11122489
dc.type.version publishedVersion

Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search archive

Advanced Search

article-iconSubmit a publication


My Account