dc.contributor |
Aalto-yliopisto |
fi |
dc.contributor |
Aalto University |
en |
dc.contributor.author |
Zhao, Zheng |
|
dc.contributor.author |
Särkkä, Simo |
|
dc.contributor.author |
Bahrami Rad, Ali |
|
dc.contributor.editor |
Pustelnik, Nelly |
|
dc.contributor.editor |
Tan, Zheng-Hua |
|
dc.contributor.editor |
Ma, Zhanyu |
|
dc.contributor.editor |
Larsen, Jan |
|
dc.date.accessioned |
2019-01-14T09:19:30Z |
|
dc.date.available |
2019-01-14T09:19:30Z |
|
dc.date.issued |
2018 |
|
dc.identifier.citation |
Zhao , Z , Särkkä , S & Bahrami Rad , A 2018 , Spectro-Temporal ECG Analysis for Atrial Fibrillation Detection . in N Pustelnik , Z-H Tan , Z Ma & J Larsen (eds) , 2018 IEEE International Workshop on Machine Learning for Signal Processing, MLSP 2018 . IEEE International Workshop on Machine Learning for Signal Processing , IEEE , IEEE International Workshop on Machine Learning for Signal Processing , Aalborg , Denmark , 17/09/2018 . https://doi.org/10.1109/MLSP.2018.8517085 |
en |
dc.identifier.isbn |
978-1-5386-5477-4 |
|
dc.identifier.issn |
2161-0363 |
|
dc.identifier.issn |
2161-0371 |
|
dc.identifier.other |
PURE UUID: 1f9fec41-5ee7-4520-b8d8-a6ab103fd94d |
|
dc.identifier.other |
PURE ITEMURL: https://research.aalto.fi/en/publications/1f9fec41-5ee7-4520-b8d8-a6ab103fd94d |
|
dc.identifier.other |
PURE FILEURL: https://research.aalto.fi/files/27863063/ELEC_Zhao_etal_Spectro_Temporal_ECG_Analysis_MLSP_2018.pdf |
|
dc.identifier.uri |
https://aaltodoc.aalto.fi/handle/123456789/35920 |
|
dc.description.abstract |
This article is concerned with spectro-temporal (i.e., time varying spectrum) analysis of ECG signals for application in atrial fibrillation (AF) detection. We propose a Bayesian spectro-temporal representation of ECG signal using state-space model and Kalman filter. The 2D spectro-temporal data are then classified by a densely connected convolutional networks (DenseNet) into four different classes: AF, non-AF normal rhythms (Normal), non-AF abnormal rhythms (Others), and noisy segments (Noisy). The performance of the proposed algorithm is evaluated and scored with the PhysioNet/Computing in Cardiology (CinC) 2017 dataset. The experiment results shows that the proposed method achieves the overall F1 score of 80.2%, which is in line with the state-of-the-art algorithms. In addition, the proposed spectro-temporal estimation approach outperforms standard time-frequency analysis methods, that is, short-time Fourier transform, continuous wavelet transform, and autoregressive spectral estimation for AF detection. |
en |
dc.format.extent |
6 |
|
dc.format.mimetype |
application/pdf |
|
dc.language.iso |
en |
en |
dc.publisher |
IEEE |
|
dc.relation.ispartof |
IEEE International Workshop on Machine Learning for Signal Processing |
en |
dc.relation.ispartofseries |
2018 IEEE International Workshop on Machine Learning for Signal Processing, MLSP 2018 |
en |
dc.relation.ispartofseries |
IEEE International Workshop on Machine Learning for Signal Processing |
en |
dc.rights |
openAccess |
en |
dc.title |
Spectro-Temporal ECG Analysis for Atrial Fibrillation Detection |
en |
dc.type |
A4 Artikkeli konferenssijulkaisussa |
fi |
dc.description.version |
Peer reviewed |
en |
dc.contributor.department |
Department of Electrical Engineering and Automation |
|
dc.subject.keyword |
atrial fibrillation |
|
dc.subject.keyword |
deep learning |
|
dc.subject.keyword |
Kalman filter |
|
dc.subject.keyword |
state-space model |
|
dc.subject.keyword |
spectrogram estimation |
|
dc.identifier.urn |
URN:NBN:fi:aalto-201901141103 |
|
dc.identifier.doi |
10.1109/MLSP.2018.8517085 |
|
dc.type.version |
acceptedVersion |
|