Locking-free variational formulations and isogeometric analysis for the Timoshenko beam models of strain gradient and classical elasticity

 |  Login

Show simple item record

dc.contributor Aalto-yliopisto fi
dc.contributor Aalto University en
dc.contributor.author Balobanov, Viacheslav
dc.contributor.author Niiranen, Jarkko
dc.date.accessioned 2018-12-10T10:20:40Z
dc.date.available 2018-12-10T10:20:40Z
dc.date.issued 2018-09-01
dc.identifier.citation Balobanov , V & Niiranen , J 2018 , ' Locking-free variational formulations and isogeometric analysis for the Timoshenko beam models of strain gradient and classical elasticity ' Computer Methods in Applied Mechanics and Engineering , vol. 339 , pp. 137-159 . DOI: 10.1016/j.cma.2018.04.028 en
dc.identifier.issn 0045-7825
dc.identifier.issn 1879-2138
dc.identifier.other PURE UUID: 741ae1d0-e01e-4c96-94ae-bdaa8029b4f0
dc.identifier.other PURE ITEMURL: https://research.aalto.fi/en/publications/lockingfree-variational-formulations-and-isogeometric-analysis-for-the-timoshenko-beam-models-of-strain-gradient-and-classical-elasticity(741ae1d0-e01e-4c96-94ae-bdaa8029b4f0).html
dc.identifier.other PURE LINK: http://www.scopus.com/inward/record.url?scp=85042383543&partnerID=8YFLogxK
dc.identifier.uri https://aaltodoc.aalto.fi/handle/123456789/35103
dc.description.abstract The Timoshenko beam bending problem is formulated in the context of strain gradient elasticity for both static and dynamic analysis. Two non-standard variational formulations in the Sobolev space framework are presented in order to avoid the numerical shear locking effect pronounced in the strain gradient context. Both formulations are shown to be reducible to their locking-free counterparts of classical elasticity. Conforming Galerkin discretizations for numerical results are obtained by an isogeometric Cp−1-continuous approach with B-spline basis functions of order p≥2. Convergence analyses cover both statics and free vibrations as well as both strain gradient and classical elasticity. Parameter studies for the thickness and gradient parameters, including micro-inertia terms, demonstrate the capability of the beam model in capturing size effects. Finally, a model comparison between the gradient-elastic Timoshenko and Euler–Bernoulli beam models justifies the relevance of the former, confirmed by experimental results on nano-beams from literature. en
dc.format.extent 23
dc.format.extent 137-159
dc.language.iso en en
dc.relation.ispartofseries Computer Methods in Applied Mechanics and Engineering en
dc.relation.ispartofseries Volume 339 en
dc.rights embargoedAccess en
dc.subject.other Computational Mechanics en
dc.subject.other Mechanics of Materials en
dc.subject.other Mechanical Engineering en
dc.subject.other Physics and Astronomy(all) en
dc.subject.other Computer Science Applications en
dc.subject.other 212 Civil and construction engineering en
dc.title Locking-free variational formulations and isogeometric analysis for the Timoshenko beam models of strain gradient and classical elasticity en
dc.type A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä fi
dc.description.version Peer reviewed en
dc.contributor.department Department of Civil Engineering
dc.subject.keyword Isogeometric analysis
dc.subject.keyword Shear locking
dc.subject.keyword Size effect
dc.subject.keyword Strain gradient elasticity
dc.subject.keyword Timoshenko beam
dc.subject.keyword Variational formulation
dc.subject.keyword Computational Mechanics
dc.subject.keyword Mechanics of Materials
dc.subject.keyword Mechanical Engineering
dc.subject.keyword Physics and Astronomy(all)
dc.subject.keyword Computer Science Applications
dc.subject.keyword 212 Civil and construction engineering
dc.identifier.urn URN:NBN:fi:aalto-201812106118
dc.identifier.doi 10.1016/j.cma.2018.04.028
dc.date.embargo info:eu-repo/date/embargoEnd/2020-05-24

Files in this item

Files Size Format View

There are no open access files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search archive

Advanced Search

article-iconSubmit a publication