Crystalline Cyclophane–Protein Cage Frameworks

 |  Login

Show simple item record

dc.contributor Aalto-yliopisto fi
dc.contributor Aalto University en Beyeh, Ngong Nonappa, Nonappa Liljeström, Ville Mikkilä, Joona Korpi, Antti Bochicchio, Davide Pavan, Giovanni M. Ikkala, Olli Ras, Robin H. A. Kostiainen, Mauri 2018-09-21T09:49:18Z 2018-09-21T09:49:18Z 2018-07-13
dc.identifier.citation Beyeh , N , Nonappa , N , Liljeström , V , Mikkilä , J , Korpi , A , Bochicchio , D , Pavan , G M , Ikkala , O , Ras , R H A & Kostiainen , M 2018 , ' Crystalline Cyclophane–Protein Cage Frameworks ' ACS NANO , vol 12 , no. 8 , 8b02856 , pp. 8029-8036 . DOI: 10.1021/acsnano.8b02856 en
dc.identifier.issn 1936-0851
dc.identifier.issn 1936-086X
dc.identifier.other PURE UUID: 67de9a05-8f0c-4673-a778-3fcc0c2bdedb
dc.identifier.other PURE ITEMURL:
dc.identifier.other PURE LINK:
dc.identifier.other PURE LINK:
dc.identifier.other PURE FILEURL:
dc.description.abstract Cyclophanes are macrocyclic supramolecular hosts famous for their ability to bind atomic or molecular guests via noncovalent interactions within their well-defined cavities. In a similar way, porous crystalline networks, such as metal–organic frameworks, can create microenvironments that enable controlled guest binding in the solid state. Both types of materials often consist of synthetic components, and they have been developed within separate research fields. Moreover, the use of biomolecules as their structural units has remained elusive. Here, we have synthesized a library of organic cyclophanes and studied their electrostatic self-assembly with biological metal-binding protein cages (ferritins) into ordered structures. We show that cationic pillar[5]arenes and ferritin cages form biohybrid cocrystals with an open protein network structure. Our cyclophane–protein cage frameworks bridge the gap between molecular frameworks and colloidal nanoparticle crystals and combine the versatility of synthetic supramolecular hosts with the highly selective recognition properties of biomolecules. Such host–guest materials are interesting for porous material applications, including water remediation and heterogeneous catalysis. en
dc.format.extent 8029-8036
dc.format.mimetype application/pdf
dc.language.iso en en
dc.relation.ispartofseries ACS NANO en
dc.relation.ispartofseries Volume 12, issue 8 en
dc.rights openAccess en
dc.subject.other Materials Science(all) en
dc.subject.other Engineering(all) en
dc.subject.other Physics and Astronomy(all) en
dc.subject.other 114 Physical sciences en
dc.title Crystalline Cyclophane–Protein Cage Frameworks en
dc.type A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä fi
dc.description.version Peer reviewed en
dc.contributor.department Department of Applied Physics
dc.contributor.department Department of Biotechnology and Chemical Technology
dc.contributor.department Department of Bioproducts and Biosystems
dc.contributor.department University of Applied Sciences and Arts of Southern Switzerland
dc.subject.keyword protein cage
dc.subject.keyword cyclophane
dc.subject.keyword pillararene
dc.subject.keyword crystal
dc.subject.keyword self-assembly
dc.subject.keyword electrostatic binding
dc.subject.keyword Materials Science(all)
dc.subject.keyword Engineering(all)
dc.subject.keyword Physics and Astronomy(all)
dc.subject.keyword 114 Physical sciences
dc.identifier.urn URN:NBN:fi:aalto-201809215146
dc.identifier.doi 10.1021/acsnano.8b02856
dc.type.version publishedVersion

Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search archive

Advanced Search

article-iconSubmit a publication


My Account