dc.contributor |
Aalto-yliopisto |
fi |
dc.contributor |
Aalto University |
en |
dc.contributor.author |
Laakso, Tuija |
|
dc.contributor.author |
Kokkonen, Teemu |
|
dc.contributor.author |
Mellin, Ilkka |
|
dc.contributor.author |
Vahala, Riku |
|
dc.date.accessioned |
2018-09-21T09:49:07Z |
|
dc.date.available |
2018-09-21T09:49:07Z |
|
dc.date.issued |
2018-09-13 |
|
dc.identifier.citation |
Laakso , T , Kokkonen , T , Mellin , I & Vahala , R 2018 , ' Sewer Condition Prediction and Analysis of Explanatory Factors ' , WATER , vol. 10 , no. 9 , 1239 , pp. 1-17 . https://doi.org/10.3390/w10091239 |
en |
dc.identifier.issn |
2073-4441 |
|
dc.identifier.other |
PURE UUID: 34a89431-b97e-4b8e-9af0-a5773962c66a |
|
dc.identifier.other |
PURE ITEMURL: https://research.aalto.fi/en/publications/34a89431-b97e-4b8e-9af0-a5773962c66a |
|
dc.identifier.other |
PURE LINK: http://www.scopus.com/inward/record.url?scp=85053276734&partnerID=8YFLogxK |
|
dc.identifier.other |
PURE FILEURL: https://research.aalto.fi/files/27969906/water_10_01239.pdf |
|
dc.identifier.uri |
https://aaltodoc.aalto.fi/handle/123456789/34047 |
|
dc.description.abstract |
Sewer condition is commonly assessed using closed-circuit television (CCTV) inspections. In this paper, we combine inspection results, pipe attributes, network data, and data on pipe environment to predict pipe condition and to discover which factors affect it. We apply the random forest algorithm to model pipe condition and assess the variable importance using the Boruta algorithm. We analyse the impact of predictor variables on poor condition using partial dependence plots, which are a valuable technique for this purpose. The results can be used in screening pipes for future inspections and provide insight into the dynamics between predictor variables and poor condition |
en |
dc.format.extent |
17 |
|
dc.format.extent |
1-17 |
|
dc.format.mimetype |
application/pdf |
|
dc.language.iso |
en |
en |
dc.relation.ispartofseries |
WATER |
en |
dc.relation.ispartofseries |
Volume 2018, issue 10 |
en |
dc.rights |
openAccess |
en |
dc.title |
Sewer Condition Prediction and Analysis of Explanatory Factors |
en |
dc.type |
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä |
fi |
dc.description.version |
Peer reviewed |
en |
dc.contributor.department |
Water and Environmental Eng. |
|
dc.contributor.department |
Department of Mathematics and Systems Analysis |
|
dc.contributor.department |
Department of Built Environment |
en |
dc.subject.keyword |
Boruta algorithm |
|
dc.subject.keyword |
logistic regression |
|
dc.subject.keyword |
partial dependence plot |
|
dc.subject.keyword |
random forest |
|
dc.subject.keyword |
sewer condition |
|
dc.subject.keyword |
variable selection |
|
dc.identifier.urn |
URN:NBN:fi:aalto-201809215142 |
|
dc.identifier.doi |
10.3390/w10091239 |
|
dc.type.version |
publishedVersion |
|