Dispersions and light-matter interactions in plasmonic lattices of different geometries

 |  Login

Show simple item record

dc.contributor Aalto-yliopisto fi
dc.contributor Aalto University en
dc.contributor.advisor Hakala, Tommi, Dr., Aalto University, Department of Applied Physics, Finland and University of Eastern Finland, Finland
dc.contributor.author Guo, Rui
dc.date.accessioned 2018-09-11T09:03:13Z
dc.date.available 2018-09-11T09:03:13Z
dc.date.issued 2018
dc.identifier.isbn 978-952-60-8160-1 (electronic)
dc.identifier.isbn 978-952-60-8159-5 (printed)
dc.identifier.issn 1799-4942 (electronic)
dc.identifier.issn 1799-4934 (printed)
dc.identifier.issn 1799-4934 (ISSN-L)
dc.identifier.uri https://aaltodoc.aalto.fi/handle/123456789/33989
dc.description.abstract A metallic nanoparticle array with a periodicity comparable to the single particle resonance can show extremely narrow resonances in its extinction spectrum. This phenomenon is known as the surface lattice resonance (SLR) of the array. In this dissertation we show how the SLRs can influence the emission of light from nearby emitters, leading to amplified spontaneous emission, lasing, or even condensation. In particular, we focus on the effects of the local density of states (LDOS) and of the lattice geometry.  In Chapters 2 the interactions between SLRs and quantum dots (QDs) are studied. We developed a hybrid lithography-functionalization method to efficiently deposit silica-coated QDs onto the near-field regions of plasmonic nanoarrays. The emission from randomly-oriented QDs were found to couple with the collective SLR mode of the plasmonic lattice, resulting in amplified spontaneous emission (ASE) and a directional light source. The high LDOS of the SLRs, especially at the Gamma-point, significantly enhanced the spontaneous emission rate of the QDs by a factor of 30.  In Chapter 3, we demonstrate for the first time Bose-Einstein condensation (BEC) of SLRs. SLRs can be considered as bosonic excitations, enabling, under suitable conditions, a macroscopic occupation of given modes. We employed a unique measurement scheme that allows to probe the evolution of the SLRs upon propagation. We showed that the interactions between propagating SLR excitations and organic molecules result to gradual decrease in energy of the SLR excitations and, finally, to BEC.  Chapters 4 and 5 of this dissertation introduce work on geometry dependence of the SLRs. We proposed a simple theoretical framework to interpret the dispersions of nanoparticle arrays with different lattice geometries, such as square, hexagonal, and Lieb lattice. This framework allows designing the lattice parameters and tailoring the dispersion. Based on this we fabricated gold nanopartice arrays in a honeycomb lattice and measured the dispersions at the K-point in the first Brillouin zone edge. Previous works on lasing in plasmonic nanoparticle arrays rely on feedback at the Gamma-point. For the first time, we have observed lasing at the K-points in a plasmonic lattice, with specific polarization properties originating from the lattice geometry. en
dc.format.extent 76 + app. 70
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.publisher Aalto University en
dc.publisher Aalto-yliopisto fi
dc.relation.ispartofseries Aalto University publication series DOCTORAL DISSERTATIONS en
dc.relation.ispartofseries 166/2018
dc.relation.haspart [Publication 1]: R. Guo, S. Derom, A.I. Väkeväinen, R.J.A. van Dijk-Moes, P. Liljeroth, D. Vanmaekelbergh, P. Törmä. Controlling quantum dot emission by plasmonic nanoarrays. Optics Express, 23, 22, 28206-28215, 2015. DOI: 10.1364/OE.23.028206
dc.relation.haspart [Publication 2]: R. Guo, T.K. Hakala, P. Törmä. Geometry dependence of surface lattice resonances in plasmonic nanoparticle arrays. Physical Review B, 95, 15, 155423, 2017. DOI: 10.1103/PhysRevB.95.155423
dc.relation.haspart [Publication 3]: T.K. Hakala, A.J. Moilanen, A.I. Väkeväinen, R. Guo, J.-P. Martikainen, K.S. Daskalakis, H.T. Rekola, A. Julku, P. Törmä. Bose-Einstein Condensation in a Plasmonic Lattice. Nature Physics, 14, 739–744, 2018. DOI: 10.1038/s41567-018-0109-9
dc.relation.haspart [Publication 4]: R. Guo, M. Necada, T.K. Hakala, A.I. Väkeväinen, P. Törmä. Lasing at the K-points of a honeycomb plasmonic lattice. Submitted to Physical Review Letters, 2018.
dc.subject.other Physics en
dc.title Dispersions and light-matter interactions in plasmonic lattices of different geometries en
dc.type G5 Artikkeliväitöskirja fi
dc.contributor.school Perustieteiden korkeakoulu fi
dc.contributor.school School of Science en
dc.contributor.department Teknillisen fysiikan laitos fi
dc.contributor.department Department of Applied Physics en
dc.subject.keyword plasmonics en
dc.subject.keyword nanoparticle arrays en
dc.subject.keyword lattice geometries en
dc.identifier.urn URN:ISBN:978-952-60-8160-1
dc.type.dcmitype text en
dc.type.ontasot Doctoral dissertation (article-based) en
dc.type.ontasot Väitöskirja (artikkeli) fi
dc.contributor.supervisor Törmä, Päivi, Prof., Aalto University, Department of Applied Physics, Finland
dc.opn Barnes, Bill, Prof., University of Exeter, UK
dc.contributor.lab Quantum Dynamics en
dc.rev Hess, Ortwin, Prof., Imperial College London, UK
dc.rev Genty, Goëry, Prof., Tampere University of Technology, Finland
dc.date.defence 2018-09-20
local.aalto.acrisexportstatus checked

Files in this item

This item appears in the following Collection(s)

Show simple item record

Search archive

Advanced Search

article-iconSubmit a publication


My Account