Random Search Algorithms for Optimal Control

 |  Login

Show simple item record

dc.contributor Aalto-yliopisto fi
dc.contributor Aalto University en
dc.contributor.advisor Hämäläinen, Perttu, Prof., Aalto University, Department of Media, Finland
dc.contributor.advisor Kyrki, Ville, Prof., Aalto University, Department of Electrical Engineering and Automation, Finland
dc.contributor.author Rajamäki, Joose
dc.date.accessioned 2018-09-05T09:03:22Z
dc.date.available 2018-09-05T09:03:22Z
dc.date.issued 2018
dc.identifier.isbn 978-952-60-8156-4 (electronic)
dc.identifier.isbn 978-952-60-8155-7 (printed)
dc.identifier.issn 1799-4942 (electronic)
dc.identifier.issn 1799-4934 (printed)
dc.identifier.issn 1799-4934 (ISSN-L)
dc.identifier.uri https://aaltodoc.aalto.fi/handle/123456789/33837
dc.description.abstract Optimal control is an important tool in many application areas, it is for example a central tool in robotics. Many widely used methods such as differential dynamic programming (DDP) are based on differentiating the dynamics of the controlled systems and the objective function. The assumption that one would have access to a differentiable model of the entire system does not hold for many systems of interest. For example, collisions break this assumption. In this case one has to resort to random search (Monte Carlo) algorithms. This thesis presents random search algorithms that fall into two categories. The first category is locally optimal sampling based trajectory optimization methods. The second one is real-time capable Monte Carlo tree search (MCTS) methods augmented with supervised machine learning. This thesis presents sampled differential dynamic programming (SaDDP), which is a random search trajectory optimization method, derived from the differential dynamic programming algorithm. SaDDP is derived by relating the quantities of the Taylor-expansion in DDP to the statistics of a multivariate normal distribution. This allows the statistics to be recomputed from sampled data instead of utilizing differentiation to obtain them. The thesis also presents ways to regularize the SaDDP algorithm efficiently.  The real-time capable MCTS methods presented in this thesis enable the real-time control of complicated systems, such as physics-based 3D characters. The methods perform a receding horizon lookahead search and use the data produced by the lookahead search to teach machine learning models how to better search for the actions in the future. The demonstrated combination of receding horizon search and supervised learning is fast to converge and yields robust learning.  The MCTS in this thesis combines information from multiple sources. This thesis presents how to combine the information from various sources in such a way that the search adapts to the information sources agreeing or disagreeing. In addition to new search algorithms, this thesis presents a combination of MCTS and a neural network generative model. This combination enables the neural network to learn that it can perform different actions in a single state. en
dc.description.abstract Optimisäätö on tärkeä väline useilla sovellusalueilla, se on esimerkiksi keskeinen työkalu robotiikassa. Monet laajasti käytössä olevat menetelmät kuten differentiaalinen dynaaminen optimointi (DDP) perustuvat ohjatun järjestelmän dynamiikan ja kohdefunktion differentiointiin. Oletus järjestelmän mallin differentioituvuudesta ei päde monille järjestelmille, joita halutaan säätää. Esimerkiksi törmäykset rikkovat kyseisen olettaman. Tässä tapauksessa on otettava käyttöön satunnaishaku- eli Monte Carlo algoritmit. Tässä väitöskirjassa esitetyt satunnaishakualgoritmit jakautuvat kahteen kategoriaan. Toinen näistä on lokaalisti optimaaliset satunnaishakuun perustuvat liikerataoptimointimenetelmät. Toinen kategorioista on reaaliaikaiseen ohjaukseen kykenevät Monte Carlo puuhakumenetelmät (MCTS), joita on täydennetty koneoppimismenetelmillä, joita koulutetaan valvotulla oppimisella.  Tämä väitöskirja esittää näytteistetyn differentiaalisen dynaamisen optimoinnin (SaDDP), joka on differentiaalisesta dynaamisesta optimoinnista johdettu satunnaishakuun perustuva liikerataoptimointimenetelmä. SaDDP on johdettu rinnastamalla DDP:ssä käytetyn Taylor-kehitelmän suureet moniulotteisen normaalijakauman tunnuslukuihin. Nämä tunnusluvut voidaan laskea uudelleen näytteistä sen sijaan, että käytettäisiin differentiointia niiden laskemiseen. Tämä väitöskirja esittää myös tapoja SaDDP:n tehokkaaseen regularisoimiseen.  Tässä väitöskirjassa esitetyt reaaliaikaiseen säätöön kykenevät MCTS-menetelmät mahdollistavat monimutkaisten järjestelmien, kuten 3D-hahmojen, ohjaamisen. Menetelmät suorittavat loitontuvan horisontin haun ja käyttävät haun tuottamaa dataa koneoppimismallien opettamiseen. Nämä koneoppimismallit vuorostaan avustavat tulevia hakuja. Kyseinen loitontuvan horisontin haku yhdistettynä valvottuun koneoppimiseen konvergoi nopeasti ja saa algoritmin oppimaan vakaasti.  Tämän väitöskirjan MCTS-menetelmät yhdistävät informaatiota useista lähteistä. Tässä väitöskirjassa esitetään, miten näiden lähteiden sisältämä informaatio voidaan yhdistää siten, että menetelmä sopeutuu tilanteisiin, jossa informaatio on yhtenevää taikka ristiriitaista. Näiden uudenlaisten hakualgoritmien lisäksi tässä väitöskirjassa esitetään MCTS-haku, jota avustaa generatiivinen neuroverkko. Tämä yhdistelmä mahdollistaa sen, että neuroverkko voi oppia suorittamaan useita vaihtoehtoisia toimintoja kussakin tilassa. fi
dc.format.extent 104 + app. 58
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.publisher Aalto University en
dc.publisher Aalto-yliopisto fi
dc.relation.ispartofseries Aalto University publication series DOCTORAL DISSERTATIONS en
dc.relation.ispartofseries 164/2018
dc.relation.haspart [Publication 1]: Joose Rajamäki, Kourosh Naderi, Ville Kyrki, Perttu Hämäläinen. Sampled Differential Dynamic Programming. In IEEE/RSJ International Conference on Intelligent Robots and Systems, Daejeon, South Korea, October 2016. DOI: 10.1109/IROS.2016.7759229
dc.relation.haspart [Publication 2]: Joose Rajamäki, Perttu Hämäläinen. Regularizing Sampled Differential Dynamic Programming. In American Control Conference, Milwaukee, USA, June 2018. DOI: 10.23919/ACC.2018.8430799
dc.relation.haspart [Publication 3]: Joose Rajamäki, Perttu Hämäläinen. Augmenting Sampling Based Controllers with Machine Learning. In ACM SIGGRAPH / Eurographics Symposium on Computer Animation, Los Angeles, USA, July 2017. DOI: 10.1145/3099564.3099579
dc.relation.haspart [Publication 4]: Joose Rajamäki, Perttu Hämäläinen. Continuous Control Monte Carlo Tree Search Informed by Multiple Experts. IEEE Transactions on Visualization and Computer Graphics, July 2018. DOI: 10.1109/TVCG.2018.2849386
dc.relation.haspart [Errata file]: Errata of P3
dc.subject.other Automation en
dc.subject.other Computer science en
dc.title Random Search Algorithms for Optimal Control en
dc.title Satunnaishakualgoritmeja optimaaliseen säätöön fi
dc.type G5 Artikkeliväitöskirja fi
dc.contributor.school Perustieteiden korkeakoulu fi
dc.contributor.school School of Science en
dc.contributor.department Tietotekniikan laitos fi
dc.contributor.department Department of Computer Science en
dc.subject.keyword Monte Carlo en
dc.subject.keyword Monte Carlo tree search en
dc.subject.keyword differential dynamic programming en
dc.subject.keyword Monte Carlo -puuhaku fi
dc.subject.keyword differentiaalinen dynaaminen optimointi fi
dc.identifier.urn URN:ISBN:978-952-60-8156-4
dc.type.dcmitype text en
dc.type.ontasot Doctoral dissertation (article-based) en
dc.type.ontasot Väitöskirja (artikkeli) fi
dc.contributor.supervisor Hämäläinen, Perttu, Prof., Aalto University, Department of Media, Finland
dc.opn Tassa, Yuval, Dr., Google, United Kingdom
dc.contributor.lab Aalto Game Research Group en
dc.rev van de Panne, Michiel, Prof., University of British Columbia, Canada
dc.rev Mansard, Nicolas, Dr., Laboratoire d'analyse et d'architecture des systèmes, France
dc.date.defence 2018-10-09
local.aalto.acrisexportstatus checked


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search archive


Advanced Search

article-iconSubmit a publication

Browse

My Account