Absorption refrigerators based on Coulomb-coupled single-electron systems

 |  Login

Show simple item record

dc.contributor Aalto-yliopisto fi
dc.contributor Aalto University en
dc.contributor.author Erdman, Paolo Andrea
dc.contributor.author Bhandari, Bibek
dc.contributor.author Fazio, Rosario
dc.contributor.author Pekola, Jukka P.
dc.contributor.author Taddei, Fabio
dc.date.accessioned 2018-08-30T06:42:56Z
dc.date.available 2018-08-30T06:42:56Z
dc.date.issued 2018-07-31
dc.identifier.citation Erdman , P A , Bhandari , B , Fazio , R , Pekola , J P & Taddei , F 2018 , ' Absorption refrigerators based on Coulomb-coupled single-electron systems ' Physical Review B , vol 98 , no. 4 , 045433 , pp. 1-10 . DOI: 10.1103/PhysRevB.98.045433 en
dc.identifier.issn 2469-9950
dc.identifier.issn 1550-235X
dc.identifier.other PURE UUID: de0d10fb-490c-4fcc-a506-d71e131c569c
dc.identifier.other PURE ITEMURL: https://research.aalto.fi/en/publications/absorption-refrigerators-based-on-coulombcoupled-singleelectron-systems(de0d10fb-490c-4fcc-a506-d71e131c569c).html
dc.identifier.other PURE LINK: http://www.scopus.com/inward/record.url?scp=85051417481&partnerID=8YFLogxK
dc.identifier.other PURE FILEURL: https://research.aalto.fi/files/27419696/PhysRevB.98.045433.pdf
dc.identifier.uri https://aaltodoc.aalto.fi/handle/123456789/33618
dc.description | openaire: EC/H2020/742559/EU//SQH
dc.description.abstract We analyze a simple implementation of an absorption refrigerator, a system that requires heat and not work to achieve refrigeration, based on two Coulomb-coupled single-electron systems. We analytically determine the general condition to achieve cooling-by-heating, and we determine the system parameters that simultaneously maximize the cooling power and cooling coefficient of performance (COP) finding that the system displays a particularly simple COP that can reach Carnot's upper limit. We also find that the cooling power can be indirectly determined by measuring a charge current. Analyzing the system as an autonomous Maxwell demon, we find that the highest efficiencies for information creation and consumption can be achieved, and we relate the COP to these efficiencies. Finally, we propose two possible experimental setups based on quantum dots or metallic islands that implement the nontrivial cooling condition. Using realistic parameters, we show that these systems, which resemble existing experimental setups, can develop an observable cooling power. en
dc.format.extent 1-10
dc.format.mimetype application/pdf
dc.language.iso en en
dc.relation info:eu-repo/grantAgreement/EC/H2020/742559/EU//SQH
dc.relation.ispartofseries Physical Review B en
dc.relation.ispartofseries Volume 98, issue 4 en
dc.rights openAccess en
dc.subject.other Electronic, Optical and Magnetic Materials en
dc.subject.other Condensed Matter Physics en
dc.subject.other 114 Physical sciences en
dc.title Absorption refrigerators based on Coulomb-coupled single-electron systems en
dc.type A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä fi
dc.description.version Peer reviewed en
dc.contributor.department CNR-ENEA-EURATOM Association
dc.contributor.department Centre of Excellence in Quantum Technology, QTF
dc.contributor.department Department of Applied Physics en
dc.subject.keyword Electronic, Optical and Magnetic Materials
dc.subject.keyword Condensed Matter Physics
dc.subject.keyword 114 Physical sciences
dc.identifier.urn URN:NBN:fi:aalto-201808304744
dc.identifier.doi 10.1103/PhysRevB.98.045433
dc.type.version publishedVersion


Files in this item

Files Size Format View

There are no open access files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search archive


Advanced Search

article-iconSubmit a publication

Browse