Learning Centre

Online Face Recognition with Application to Proactive Augmented Reality

 |  Login

Show simple item record

dc.contributor Aalto-yliopisto fi
dc.contributor Aalto University en
dc.contributor.advisor Koskela, Markus
dc.contributor.author Wu, Jing
dc.date.accessioned 2012-03-12T07:04:41Z
dc.date.available 2012-03-12T07:04:41Z
dc.date.issued 2010
dc.identifier.uri https://aaltodoc.aalto.fi/handle/123456789/3242
dc.description.abstract Recently, more and more researchers have concentrated on the research of video-based face recognition. The topic of this thesis is online face recognition with application to proactive augmented reality. We intend to solve online single-image and multiple-image face recognition problems when the influence of illumination variations is introduced. First, three machine learning approaches are utilized in single-image face recognition: PCA-based, 2DPCA-based, and SVM-based approaches. Illumination variations are big obstacles for face recognition. The next step in our approach therefore involves illumination normalization. Image preprocessing (AHE+RGIC) and invariant feature extraction (Eigenphases and LBP) methods are employed to compensate for illumination variations. Finally, in order to improve the recognition performance, we propose several novel algorithms to multiple-image face recognition which consider the multiple images as query data for subsequent classification. These algorithms are called MIK-NN, MMIK-NN and Kmeans+Muliple K-NN. In conclusion, the simulation experiment results show that the LBP+x2-based method efficiently compensates for the illumination effect and MMIK-NN considerably improves the performance of online face recognition. en
dc.format.extent ix + 64
dc.format.mimetype application/pdf
dc.language.iso en en
dc.publisher Aalto-yliopisto fi
dc.publisher Aalto University en
dc.title Online Face Recognition with Application to Proactive Augmented Reality en
dc.type G2 Pro gradu, diplomityö fi
dc.contributor.school Informaatio- ja luonnontieteiden tiedekunta fi
dc.subject.keyword online face recognition en
dc.subject.keyword feature extraction en
dc.subject.keyword classification en
dc.subject.keyword machine learning en
dc.subject.keyword illumination normalization en
dc.subject.keyword recognition accuracy en
dc.identifier.urn URN:NBN:fi:aalto-201203131473
dc.type.dcmitype text en
dc.programme.major Informaatiotekniikka fi
dc.programme.mcode T-61
dc.type.ontasot Diplomityö fi
dc.type.ontasot Master's thesis en
dc.contributor.supervisor Oja, Erkki
local.aalto.openaccess yes
local.aalto.digifolder Aalto_06178
dc.rights.accesslevel openAccess
local.aalto.idinssi 40119
dc.type.publication masterThesis
dc.type.okm G2 Pro gradu, diplomityö

Files in this item

This item appears in the following Collection(s)

Show simple item record

Search archive

Advanced Search

article-iconSubmit a publication