In Situ Experiment and Numerical Model Validation of a Borehole Heat Exchanger in Shallow Hard Crystalline Rock

 |  Login

Show simple item record

dc.contributor Aalto-yliopisto fi
dc.contributor Aalto University en
dc.contributor.author Janiszewski, Mateusz
dc.contributor.author Caballero Hernandez, Enrique
dc.contributor.author Siren, Topias
dc.contributor.author Uotinen, Lauri
dc.contributor.author Kukkonen, Ilmo
dc.contributor.author Rinne, Mikael
dc.date.accessioned 2018-05-22T14:42:25Z
dc.date.available 2018-05-22T14:42:25Z
dc.date.issued 2018-04-17
dc.identifier.citation Janiszewski , M , Caballero Hernandez , E , Siren , T , Uotinen , L , Kukkonen , I & Rinne , M 2018 , ' In Situ Experiment and Numerical Model Validation of a Borehole Heat Exchanger in Shallow Hard Crystalline Rock ' ENERGIES , vol 11 , no. 4 , 963 . DOI: 10.3390/en11040963 en
dc.identifier.issn 1996-1073
dc.identifier.other PURE UUID: 9262e643-007c-4142-b45b-29e85c67e0bb
dc.identifier.other PURE ITEMURL: https://research.aalto.fi/en/publications/in-situ-experiment-and-numerical-model-validation-of-a-borehole-heat-exchanger-in-shallow-hard-crystalline-rock(9262e643-007c-4142-b45b-29e85c67e0bb).html
dc.identifier.other PURE FILEURL: https://research.aalto.fi/files/19330417/energies_11_00963_v2.pdf
dc.identifier.uri https://aaltodoc.aalto.fi/handle/123456789/31042
dc.description.abstract Accurate and fast numerical modelling of the borehole heat exchanger (BHE) is required for simulation of long-term thermal energy storage in rocks using boreholes. The goal of this study was to conduct an in situ experiment to validate the proposed numerical modelling approach. In the experiment, hot water was circulated for 21 days through a single U-tube BHE installed in an underground research tunnel located at a shallow depth in crystalline rock. The results of the simulations using the proposed model were validated against the measurements. The numerical model simulated the BHE’s behaviour accurately and compared well with two other modelling approaches from the literature. The model is capable of replicating the complex geometrical arrangement of the BHE and is considered to be more appropriate for simulations of BHE systems with complex geometries. The results of the sensitivity analysis of the proposed model have shown that low thermal conductivity, high density, and high heat capacity of rock are essential for maximising the storage efficiency of a borehole thermal energy storage system. Other characteristics of BHEs, such as a high thermal conductivity of the grout, a large radius of the pipe, and a large distance between the pipes, are also preferred for maximising efficiency. en
dc.format.extent 21
dc.format.mimetype application/pdf
dc.language.iso en en
dc.relation.ispartofseries ENERGIES en
dc.relation.ispartofseries Volume 11, issue 4 en
dc.rights openAccess en
dc.subject.other 1171 Geosciences en
dc.title In Situ Experiment and Numerical Model Validation of a Borehole Heat Exchanger in Shallow Hard Crystalline Rock en
dc.type A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä fi
dc.description.version Peer reviewed en
dc.contributor.department Department of Civil Engineering
dc.contributor.department University of Helsinki
dc.subject.keyword underground thermal energy storage
dc.subject.keyword borehole heat exchanger
dc.subject.keyword in situ experiment
dc.subject.keyword numerical modelling
dc.subject.keyword model validation
dc.subject.keyword finite element method
dc.subject.keyword COMSOL Multiphysics
dc.subject.keyword crystalline rock
dc.subject.keyword 1171 Geosciences
dc.identifier.urn URN:NBN:fi:aalto-201805222482
dc.identifier.doi 10.3390/en11040963
dc.type.version publishedVersion


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search archive


Advanced Search

article-iconSubmit a publication

Browse

My Account